
Analyzing “Not-a-Virus” Bundled Adware:
The Wajam Case?

Xavier de Carné de Carnavalet and Mohammad Mannan
Concordia University, Montreal, QC, Canada
{x decarn, mmannan}@ciise.concordia.ca

Abstract—Case studies on malicious code mostly focus on
botnets and worms (recently revived with IoT devices), prominent
pieces of malware or Advanced Persistent Threats, exploit kits,
ransomware, yet very little has been done on adware. Previous
studies on “unwanted” applications, including adware, favored
breadth of analysis, uncovering ties between different actors and
distribution methods. We investigate the evolution over nearly
six years of a particularly successful and active adware business:
Wajam. As of 2016, revealed by the Office of the Privacy Com-
missioner of Canada, Wajam had “hundreds of millions of instal-
lations” and collected 400TB of private information from users.

We gather 52 samples of Wajam, released between 2013 to
2018, and analyze the technical evolution from a simple browser
add-on to full-fledged obfuscated malware including rootkit,
browser process injection, and antivirus evasion capabilities. We
uncover its strategy to ensure a low detection rate, which heavily
relies on numerous layers of encryption, and more recently on
steganography. Furthermore, Wajam leaks the browsing histories
of four major browsers, along with the keywords searched by
users on highly popular websites. It is also vulnerable to arbitrary
content injection on HTTPS webpages, and likely to remote code
execution. We show evidence that Wajam is a widespread threat,
actively maintained with daily obfuscated samples that are poorly
detected by antivirus engines. More worrisome, we found the
same evasion techniques in another piece of adware, suggesting
that they could be provided by a third-party, and reused in
other cases. Finally, we conclude that the adware problem has
been overlooked for too long, which can reach (or even surplus)
the complexity of advanced malware, and pose both privacy
and security risks to users, more so than many well-known and
thoroughly-analyzed malware families.

I. INTRODUCTION

The business of generating revenue through ads is becoming
very intrusive for end users. Popular application download
websites are known to bundle adware with their custom
installers [24], [21]. Users can also be misled to install Poten-
tially Unwanted Programs (PUPs) that provide limited or de-
ceptive services (e.g., toolbars, cleanup utilities) along with in-
vasive ads [49], [62]. The prevalence of adware is also increas-
ing. Recent studies show that Google Safe Browsing triggers
60 million warnings per week for pay-per-install bundled in-
stallers, twice the rate of malware-related warnings [31], [62].

However, adware applications are generally not considered
as much of a threat as malware, as apparent from some
antivirus labels, e.g., “not-a-virus”, “Riskware”, “Unwanted-
Program”, “PUP.Optional”, which may not even trigger an
alert [20], [28]. After all, displaying ads is not considered

? Version: December 12, 2018.

a malicious activity. Consequently, adware has received less
scrutiny from the malware research community. Indeed, stud-
ies on PUPs focus only on the revenues, distribution and
relationships between actors [31], [62]. One exception is
Kotzias et al. [32] who looked into the abuse of code signing
and found that PUPs leverage digital signatures more often
than malware, enabling PUPs to appear more legitimate.

Malware analysis has a long history in the academia, see
e.g., the Morris Worm report from 1989 [56]. Past malware
case studies focused on regular botnets [58], IoT botnets [7],
prominent malware [50], [11], web exploit kits [27], [36],
Advanced Persistent Threats [59], [38], and ransomware [29].
However, while several malware authors have been identified
and arrested [23], [14], resulting in some reduction of exploit
kits (at least temporarily, see, e.g., [57]), adware campaigns
remain unscathed. Previous cases of ad-related products re-
ceived media attention as they severely downgrade HTTPS
security [1], [2], but they generally do not adopt techniques
from malware (e.g., obfuscation and evasion). Consequently,
security companies may prioritize their effort on malware,
while academic researchers may consider adware as a non-
problem, or simply a technically uninteresting one, enabling
adware to survive and thrive for long periods of time. Im-
portant questions remain unexplored about adware, including:
1) Are they all simply displaying advertisements? 2) Are all
strains limited in complexity and reliably detected by AVs?

We explore the case of Wajam, a seven-year old social
search engine that progressively turned into sophisticated
adware, originally developed by a Canadian company. We ini-
tially observed TLS certificates from some user machines with
seemingly random issuer names, e.g., b02669b9042c6a8f.
Some of those indicated an email address that led us to Wajam.
We then proceeded with the gathering of 52 samples dated
from 2013 to 2018. Historical samples are challenging to
obtain, since Wajam is often dynamically downloaded by other
software installers, and relies either on generic or randomized
filenames and root certificates, limiting the number of search-
able fingerprints.

Wajam probably would not subsist for seven years if it did
not impact many users, and in turn generate enough revenue.
To this end, we tracked 248 domain names that were ever used
by Wajam, as found in code signing certificates, hardcoded
URLs in samples, ad injection rules we downloaded, other
domains that were hosted simultaneously from the same IP
address, and those declared in legal documents of the company.



We found some of these domains with a rank as high as
#117,351 in Alexa top-1M and #93,915 in Umbrella top-
1M, as of June 2018.1 Wajam’s domains are queried when
ads are injected into webpages, suggesting that a substantial
number of users are infected. Indeed, during an investigation
by the Office of the Privacy Commissioner (OPC) of Canada in
2016 [42], the company behind Wajam reported to OPC that it
had made “hundreds of millions of installations” and collected
“approximately 400 terabytes” of user personal information.

We study the technical evolution of content injection and
identify four major generations, including browser add-on,
proxy settings changer, browser process injector, and system-
wide traffic interceptor. Browser process injection involves
hooking into a browser to modify the traffic after it is de-
crypted and before it is rendered, enabling man-in-the-browser
(MITB) attacks. This technique is previously unreported in
the adware realm and is known to be last used by the Zeus
malware for stealing banking information [5], [25].

Across generations, Wajam increasingly makes use of sev-
eral anti-analysis and evasion techniques including: a) nested
installers, b) steganography, c) string and library call obfusca-
tion, d) encrypted strings and files, e) deep and diversified dead
code, f) polymorphic resources, g) valid digital signatures, h)
randomized filenames and root certificate Common Names,
i) encrypted updates, and j) daily release of polymorphic
variants. It also implements anti-detection features ranging
from disabling Windows Malicious Software Removal Tool
(MRT), self-excluding its installation paths from Windows
Defender, and sometimes leveraging rootkit capabilities to hide
its installation folder from users. We detail these techniques,
which are still effective as of Nov. 2018 to lower its detection
rate, reaching as low as 3/68 AV engines on VirusTotal for a
19-min old variant and only a few AVs after a day.

More importantly, we discovered a separate piece of adware,
OtherSearch, that reuses the same model and some of the same
techniques as Wajam, sometimes more advanced. This may
hint at a common third-party who provides an obfuscation
framework to both businesses and perhaps others as well. Our
analysis here is focused on Wajam only due to the abundance
of samples we could collect.

We also found security flaws that have exposed (possibly)
millions of users for the last four years to potential arbitrary
content injection, man-in-the-middle (MITM) attacks, and re-
mote code execution (RCE). As the third generation of Wajam
leverages browser process injection, the injected content is
present in the webpage without its HTTPS certificate being
changed, preventing even a mindful user from detecting the
tampering. In addition, Wajam systematically downgrades the
security of a number of websites by removing their Content
Security Policy (CSP), e.g., facebook.com, and other security-
related HTTP headers from the server’s response. Further,
Wajam sends—in plaintext—the browsing histories from four
major browsers (if installed), and the list of installed programs,

1Cf. mcgill.ca ranks #94,148, and craigslist.ca ranks #89,229 in Umbrella
(Canadian domains used for the sake of comparison).

to Wajam’s operators. Finally, search keywords input on 100
groups of domains spanning millions of websites are also sent
out. Hence, Wajam remains as a major privacy and security
threat to millions of users.

While the existence of traffic-injecting malware is known,
and TLS flaws are reminiscent of Superfish and Privdog [1],
[2], Wajam is significantly more sophisticated. As anti-analysis
techniques get more advanced and innovative over time, they
become increasingly difficult to study. We even failed to fully
reverse-engineer all layers of few latest samples within reason-
able time. Considering Wajam’s complexity and automation of
evasion techniques, we argue that the adware problem has long
been overlooked, and mandates more serious analysis effort.
Contributions.
1) We collect and reverse-engineer 52 unique samples of

Wajam spanning across six years and identify four content
injection techniques, one of which was previously used in
a well-known banking trojan. This analysis is a significant
reverse-engineering effort to characterize the technical and
design evolution of a successful ad injector. This study
is the first to investigate the chronological evolution for
such an application over six years, shedding light on the
practices, history and techniques used by such software.

2) We uncover the serious level of complexity used in Wa-
jam across generations. These 52 samples used various
combinations of effective anti-analysis and rootkit-like
features, which are even rarely found in a single piece
of advanced malware. Such adware samples are generally
much less analyzed than malware by academic and indus-
trial researchers. Our revelations on Wajam call for more
concentrated reverse engineering efforts towards adware.

3) We also highlight serious privacy (e.g., private information
leakage) and security risks (e.g., enabling MITM and
possibly RCE attacks) to users affected by Wajam. As
new Wajam variants remain largely undetected by malware
engines during the first days, users with up-to-date AV
software and OS remain vulnerable.

II. WAJAM’S HISTORY

Wajam Internet Technologies Inc. was originally headquar-
tered in Montreal, Canada [45]. Their product (Wajam) aimed
at enhancing the search results of a number of websites
(e.g., Google, Yahoo, Ask.com, Expedia, Wikipedia, Youtube)
with content extracted from a user’s social media connections
(e.g., Twitter, Facebook, Google+, LinkedIn). Wajam was first
released in October 2011, rebranded as Social2Search in May
2016 [42], then as SearchAwesome in August 2017 (as we
found). We use the name Wajam interchangeably throughout
the paper to refer to the company or the software they
developed. To gain revenue, Wajam injects ads into browser
traffic [54]. The company progressively lost its connection
with social media and became purely adware in 2017.

The Office of the Privacy Commissioner (OPC) of Canada
investigated the company between October 2016 and July
2017 [42], based on documents provided by the company, their



own testing of the software, and a two-day visit of the office.
OPC found numerous violations of Canadian Personal Infor-
mation Protection and Electronic Documents Act (PIPEDA),
relative to the egregious collection and preservation of personal
data (“approximately 400 terabytes” by the company’s own
admission), and problematic user consent/EULA, installa-
tion/uninstallation methods. OPC issued a list of 14 recom-
mendations to correct the situation. Instead, Wajam organized
the sale of its activities to a newly-created company based
in Hong-Kong, called Iron Mountain Technology Limited
(IMTL), and therefore declared itself unaccountable to Cana-
dian regulations. IMTL seems to have continued the operations
of Wajam uninterrupted since then and continued to develop
its capabilities towards ads injection and antivirus evasion.

III. RELATED WORK

Previous studies on worms and botnets mostly focused
on the network aspect of such threats, instead of particular
software complexity or advanced obfuscation techniques; see
e.g., Conficker [50], Torpig [58] and Mirai [7]. While the
largest known botnet reached up to an estimated 50 million
users [61], it is still an order of magnitude less than the total
distribution of Wajam (“hundreds of millions”).

The Mirai botnet was studied from a software standpoint
across a thousand samples [7]. Authors tracked forks of the
original malware and their newly added features, including
e.g., self-deleting binary, more hardcoded passwords to infect
devices; however, such changes are minor and not difficult
to understand. Moreover, while the number of samples is
larger than in our study, the Mirai malware’s source code
was leaked and readily available (in contrast to Wajam). In
our case, the reverse-engineering of Wajam was done from
scratch to understand the full extent of its capabilities, and
bridge significant gaps across generations and major updates,
including dealing with e.g., steganography-based installers,
custom packers and multiple layers of encryption.

The Zeus banking malware [25], a prominent strain reach-
ing 3.6 million infections, shares similar traits with Wajam,
including encrypted code sections (albeit done differently),
dynamic library loading, encrypted payloads (for configuration
files only) with XOR or RC4 hardcoded keys. Zeus also
achieved MITM by injecting a DLL in browser processes,
similar to the third generation of Wajam. However, similar
to Mirai later in 2016, Zeus source code went public, which
helped understand its behavior. Also, forks of Zeus are still
active [9]; yet, they seem to no longer inject DLLs but simply
filter network connections to banks. Wajam’s browser process
injection is still well maintained and effective as of July 2018.

Advanced Persistent Threats (APTs) are known for the
extent of their operations, both in time and in terms of their
complexity, e.g. [59], [38]. In contrast, our focus is an adware
application, which is not expected to make use of APT-related
techniques e.g., 0-day vulnerabilities. Nevertheless, we found
that Wajam leverages effective antivirus evasion techniques,
and significantly hinders reverse-engineering, over a long
period of time. These behaviors are rare in regular malware.

Similar to adware, but more aggressive, ransomware is also
heavily motivated by monetary gains. Previous studies about
the inner workings of generations of ransomware focused
on their features and did not report significant challenges in
analyzing them. For example, Kharraz et al. [29] focused on
1,359 samples and report insights into the encryption modules,
file replacement and deletion mechanisms, ways to recover or
permanently delete data.

Web exploit kits have also been analyzed [27], [36], includ-
ing PHP and JavaScript components. Similarly, their level of
sophistication was limited.

Wajam has been cited in broad analyses covering the
distribution models of pay-per-install PUPs [31], [62]; how-
ever, only little information about Wajam itself is revealed,
including an estimated user base (in the order of hundreds
of thousands, significantly less than the figure reported by
its operators [42]), and general features (e.g., reporting that
Wajam is a browser-addon—incorrect since the end of 2014).

The NetFilter/ProtocolFilters SDKs [51] were used in Priv-
Dog [2], which was vulnerable to MITM attacks as it did not
use the certificate validation capabilities of the SDK. Böck [13]
extracted the hardcoded private keys from ProtocolFilters
found in AdGuard and PrivDog, and listed PUPs that may
rely on this library (did not include Wajam). While PrivDog
received significant attention, only one version of the product
was vulnerable, affecting 57k users [2]. In contrast, Wajam
has exposed millions of users to similar MITM attacks for
about four years. Compared to SuperFish that was installed
by default on certain Lenovo laptops, Wajam is not bound to
a specific hardware vendor nor geographic region.

Various obfuscation techniques have been documented and
can be found in other malware, e.g., encrypted code sec-
tion [63], junk code [48], polymorphic icons used by Win-
websec, SecurityShield and zbot [40], inflated executable file
size as done by the XXMM toolkit [26], rootkit as found in
the Komodia traffic interception SDK [17], the use of NSIS
installers with decryption DLLs in Cerber, Gamarue, Kovter
and ZCrypt [16], hiding encrypted payload in BMP [10]
and PNG files [39]. Wajam combines all these techniques
from the malware realm, layers them, and improves on
them. Notably, Wajam’s junk code introduces thousands of
seemingly purposeful functions interconnected in a dense call
graph where the real program functions are hidden. Also, the
use of steganography is diversified to various file formats,
and is combined with layers of obfuscated encryption and
compression in samples from 2018.

IV. SAMPLE COLLECTION AND CATEGORIZATION

We detail below our collection of 52 samples, and provide
an overview of their capabilities by grouping them according
to their four main content injection techniques. A summary
of their notable features (e.g., the use of code-signing, au-
to/stealthy installation), is provided in Table I. Hashes of the
samples are available in Table XI (Appendix).



TABLE I: Samples summary (N/A means not applicable, e.g., expired downloader samples do not install an application)

ID Installer/downloader/patch filename Sign
atu

re

Date (UTC) Authenticode CN Installed name Autoi
nsta

ll

Open
s web

pag
e

Stea
lth

y

Roo
tkit

Origin

A1 wajam install.exe X 2013-01-03 Wajam Wajam X Hybrid Analysis
A2 wajam setup.exe X 2014-01-09 Wajam Internet Technologies Inc Wajam Hybrid Analysis
A3 wajam download.exe X 2014-05-21 Insta-Download.com N/A N/A N/A N/A Malekal MalwareDB
A4 wajam download v2.exe X 2014-07-11 Insta-Download.com N/A N/A N/A N/A Malekal MalwareDB
B1 WIE 2.15.2.5.exe X 2014-09-25 FastFreeInstall.com Wajam X Malekal MalwareDB
B2 WIE 2.16.1.90.exe X 2014-10-03 FastFreeInstall.com Wajam X Malekal MalwareDB
C1 WWE 1.1.0.48.exe X 2014-10-21 AutoDownload.net Wajam X VirusShare
C2 WWE 1.1.0.51.exe X 2014-11-05 AutoDownload.net Wajam X VirusShare
C3 WWE 1.2.0.31.exe X 2014-12-03 AutoDownload.net Wajam X VirusShare
B3 wajam setup.exe X 2014-12-09 Wajam Internet Technologies Inc Wajam X Archive.org
C4 WWE 1.2.0.53.exe X 2015-01-21 AutoDownload.net Wajam X VirusShare
C5 wwe 1.43.5.6.exe X 2015-04-13 installation-sur-iphone.com Wajam X Hybrid Analysis
C6 WWE 1.52.5.3.exe X 2015-09-17 chabaneltechnology.com Wajam X X Hybrid Analysis
C7 WWE 1.53.5.19.exe X 2015-10-16 trudeautechnology.com Wajam X X Hybrid Analysis
B4 WIE 2.38.2.13.exe 2015-10-27 N/A Wajam X Malekal MalwareDB
B5 wie 2.39.2.11.exe 2015-11-05 N/A Wajam X Malekal MalwareDB
C8 wajam install.exe X 2015-11-13 preverttechnology.com Wajam X X Malekal MalwareDB
C9 WWE 1.55.1.20.exe X 2015-11-16 preverttechnology.com Wajam X X Hybrid Analysis
C10 WWE 1.58.101.25.exe X 2016-01-04 yvonlheureuxtechnology.com Wajam X X Hybrid Analysis
B6 WIE 2.40.10.5.exe 2016-01-19 N/A Wajam X X Hybrid Analysis
C11 WWE 1.61.80.6.exe X 2016-02-23 saintdominiquetechnology.com (nothing) X X X Hybrid Analysis
C12 WWE 1.61.80.8.exe X 2016-02-24 saintdominiquetechnology.com Wajam X X Hybrid Analysis
C13 WWE 1.63.101.27.exe X 2016-03-25 carmenbienvenuetechnology.com Wajam X X Hybrid Analysis
C14 WWE 1.64.105.3.exe X 2016-04-07 Telecharger-Installer.com Wajam X X Hybrid Analysis
D1 WBE 0.1.156.12.exe X 2016-04-11 technologieadrienprovencher.com Wajam X X VirusShare
C15 WWE 1.65.101.8.exe X 2016-04-14 sirwilfridlauriertechnology.com Wajam X X VirusShare
D2 wbe 0.1.156.16.exe X 2016-04-21 technologieadrienprovencher.com Wajam X X VirusShare
C16 WWE 1.65.101.21.exe X 2016-04-21 sirwilfridlauriertechnology.com Wajam X X VirusShare
D3 WBE 3.5.101.4.exe X 2016-04-28 technologieadrienprovencher.com Wajam X X Hybrid Analysis
C17 wwe 9.66.101.9.exe X 2016-05-09 sirwilfridlauriertechnology.com Social2Search X X X VirusShare
D4 WBE 11.8.1.26.exe X 2016-08-29 technologieferronnerie.com Social2Search X X Hybrid Analysis
C18 patch 1.68.15.18.zip X 2016-10-18 beaubourgtechnology.com N/A N/A N/A N/A X wajam-download.com
D5 WBE crypted bundle 11.12.1.100.release.exe X 2016-11-22 emersontechnology.com Social2Search X X Hybrid Analysis
D6 WBE crypted bundle 11.12.1.301.release.exe X 2017-01-30 wottontechnology.com Social2Search X X Malekal MalwareDB
D7 WBE crypted bundle 11.12.1.310.release.exe X 2017-02-03 piddingtontechnology.com Social2Search X X Hybrid Analysis
D8 WBE crypted bundle 11.12.1.334.release.exe X 2017-02-10 quaintontechnology.com Social2Search X X Hybrid Analysis
D9 WBE crypted bundle 11.13.1.52.release.exe X 2017-03-21 wendleburytechnology.com Social2Search X X Hybrid Analysis
C19 patch 1.77.10.1.zip 2017-04-01 N/A N/A N/A N/A N/A wajam-download.com
D10 WBE crypted bundle 11.13.1.88.release.exe X 2017-04-13 technologieflagstick.com Social2Search X X Hybrid Analysis
D11 Setup.exe X 2017-07-11 terussetechnology.com Social2Search X Hybrid Analysis
D12 Setup.exe X 2017-08-25 vanoisetechnology.com SearchAwesome X Hybrid Analysis
D13 Setup.exe X 2017-09-18 technologievanoise.com SearchAwesome X Hybrid Analysis
D14 s2s install.exe X 2017-11-27 boisseleautechnology.com SearchAwesome X Hybrid Analysis
D15 update.exe X 2017-12-25 barachoistechnology.com SearchAwesome X Hybrid Analysis
D16 Setup.exe X 2018-01-02 technologienouaillac.com SearchAwesome X Hybrid Analysis
D17 Setup.exe X 2018-02-12 pillactechnology.com SearchAwesome X Hybrid Analysis
D18 Setup.exe X 2018-02-19 pillactechnology.com SearchAwesome X Hybrid Analysis
D19 Setup.exe X 2018-03-05 technologiepillac.com SearchAwesome X mileendsoft.com
D20 Setup.exe X 2018-04-18 monestiertechnology.com SearchAwesome X technologiesnowdon.com
D21 Setup.exe X 2018-05-30 bombarderietechnology.com SearchAwesome X technologiesnowdon.com
D22 Setup.exe X 2018-06-12 technologiebombarderie.com SearchAwesome X technologiesnowdon.com
D23 Setup.exe X 2018-07-16 technologievouillon.com SearchAwesome X technologiesnowdon.com

Legend: The “Filename” is the most descriptive name we found from either the source where we found the sample, HA [18] or VirusTotal. “Signed
component” indicates whether the installer or a component it installs is authenticode-signed, in which case the Date column refers to the authenticode
signature date, otherwise it shows the latest file timestamp among all installed files. “Authenticode CN” reflects the corresponding Common Name on the
signing certificate. “Installed name” refers to the name of the application that appears in the list of installed programs on Windows. “Autoinstall” reflects
the ability of the installer to automatically proceed with the installation without user interaction (beyond launching the executable and agreeing to the UAC
prompt), i.e., it does not require clicking a button first or giving consent. “Open webpage” indicates whether a Wajam website is opened at the end of the
installation (typically to congratulate the user). “Stealthy” indicates whether the installation process is totally transparent to the user. It requires Autoinstall
and not opening a webpage by the end of the setup, and also not showing any setup window. “Rootkit” indicates the ability to hide the installed application
folder from the user. Finally, “Origin” indicates the provenance of the sample.

A. Sample collection

We obtained our first sample with a known URL to wa-
jam.com through the Internet Archive as it is no longer
available on the official website. This sample dates back from
December 2014, and appears to be a relatively early version
of the product. We obtained 10 more samples from an old

malware database [37] by searching for the application name,
two of which were only components of the whole application
(DLLs), which we discarded. After we analyzed a few of these
samples, we learned about URLs fetched by the application,
which allowed us to query keywords from another malware
database [18]. We also learned the URLs that serve variants



of the installer and downloaded one per month in 2018. At
the end of this iterative process, we collected 48 standalone
installers, two online installers, and two update packages.

The variants we fetched directly from Wajam’s servers are
named Setup.exe; however, when submitting these samples
on VirusTotal, they are sometimes already known by other
filenames, e.g., update.exe. We could not find obvious
paths that include such filenames on known Wajam servers.
This could suggest that Wajam is also hosted elsewhere, or
downloaded through different vectors.

As most of the samples are digitally signed and timestamped
or install a signed component, we could trace the history of
Wajam over five and a half years, from Jan. 2013 to July 2018.

B. Categories

We identified four injection techniques that were used
mostly chronologically. Hence, we refer to each group as a
generation. We provide the distribution of samples among
generations in Table II. In the rest of the paper, we refer
to a given sample by its generation letter followed by its
chronological index within its generation, e.g., C18. We keep
a numerical reference when referring to an entire generation,
e.g., third generation.
Generation A: Browser add-on. The two oldest samples (Jan.
2013 and 2014) install add-ons to Chrome, Firefox and IE.
There was a Safari add-on as well according to the “Uninstall”
page on wajam.com. A Chrome add-on is still available as of
Nov. 2018. These add-ons were used to directly modify the
content of selected websites to insert social-related results in
search pages, and ads. In samples A1–2, the injection engine,
Priam, receives search queries and bookmark events.
Generation B: FiddlerCore. Samples from Sept. 2014 to
Jan. 2016 have their own interception component and leverage
the FiddlerCore library [44] to proxy browser traffic. Each
detected browser has its proxy settings set to localhost with
a port on which Wajam is listening. HTTPS traffic is broken
at the proxy, which certifies the connection by a certificate
issued on-the-fly and signed by a root certificate inserted into
the Windows and Firefox trust stores. Only selected domains
are intercepted. The application is installed in the Program
Files folder with a meaningful name; however, core files have
long random names. Since no component strictly requires a
signature by the OS, some samples do not bear any signature.
We rely either on a signature on the installer (as seen prior
to 2015), or the timestamp of the latest modified file installed
(from 2015) to establish a release date for those samples.
Generation C: Browser process injection. Installers dated
between Oct. 2014 to May 2016 and two update packages up
to Mar. 2017 inject a DLL into IE, Firefox and Chrome, and
hooks specific functions to modify page contents after they are
fetched from the network (and decrypted in the case of HTTPS
traffic), but before they are rendered. As a consequence, the
injected traffic in encrypted pages is displayed while the
browser shows the original server certificate, making this
generation more stealthy (for similar MITB attacks, see e.g.,
Zeus [25], SpyEye [33], Citadel [53]). We tested the latest

TABLE II: Distribution of samples among generations

Gen. Period covered # samples Injection technique
A 2013-01 – 2014-07 4 Browser add-on
B 2014-09 – 2016-01 6 FiddlerCore
C 2014-10 – 2017-03 19 Browser process injection
D 2016-01 – 2018-07 23 NetFilter+ProtocolFilters

versions of IE/Firefox/Chrome on an up-to-date Windows 7
32-bit and confirmed that the injection method is still fully
functional. We later found that browser hooking parameters are
actively maintained and kept updated hourly (Section VIII).
Generation D: NetFilter SDK+ProtocolFilters. Starting
from Apr. 2016, a fourth generation implements yet another
injection technique, based on NetFilter. Installers dated after
May 2016 install a program called Social2Search instead of
Wajam. Furthermore, samples dated from Aug. 2017 (i.e.,
few months after the company was sold to IMTL) are again
rebranded as SearchAwesome. The NetFilter SDK enables
traffic interception, which is combined with ProtocolFilters
that provides APIs for tampering with the traffic at the appli-
cation layer. Instead of explicitly configuring browsers’ proxy
settings, NetFilter installs a network driver that intercepts
all the network traffic irrespective of the application. In this
generation, all HTTPS traffic is intercepted and all TLS
connections are broken at the proxy, except for the traffic
originating from blacklisted process names.

V. METHODOLOGY AND RESULTS SUMMARY

A. Test environment and sample execution

We leverage VMware Workstation (WS) and an up-to-date
installation of Windows 7 Pro 32-bit with Internet Explorer
(IE) 11 and Firefox 61 to capture the installation process. For
each sample, we instrument WS to start from a fresh VM snap-
shot, transfer the sample on the guest’s desktop, start Process
Monitor2 to capture a trace of I/O activities, and start Wire-
shark on the host OS to record the network traffic. We also take
a snapshot of the filesystem and registry before and after the
sample is installed to detect modifications made on the system.

We run the sample with UAC disabled to avoid answering
the prompt, and complete the installation, which usually
requires clicking only one button. It could be possible to
instrument the UI to fully automate the process; however, we
wanted to verify whether the sample installs without asking for
user consent, opens a webpage at the end of the setup, or if the
process is completely stealthy. We note that the UAC prompt
is not a significant barrier for Wajam, as it is found bundled
(statically or downloaded at runtime) in other installers for
which users already gave admin privileges.

We could have used existing malware analysis sandboxes;
however, a local deployment would have been required as
we needed control over certain registry keys (e.g., Machine
GUID3) for our analysis. Furthermore, for consistency and

2https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
3The Machine GUID used in our experiment is

81cba4ed-36b4-4d66-9b6a-6a4a508dc394

https://docs.microsoft.com/en-us/sysinternals/downloads/procmon


ease of debugging, we used the same environment to capture
runtime behaviors and selectively debug samples.

We also verify for selected samples whether they remain
fully functional on a Windows 8.1 Pro 64-bit installation. We
noticed that some samples lead to a denial of service for
certain websites in this case. We also conduct a more thorough
analysis on selected samples from each generation as needed to
fully understand functionalities, by debugging the application
and conducting MITM attacks.

B. Dynamic and static analysis methodology

Anti-analysis techniques are not reflected by the changes
made to the system; hence, we look more closely at each step
of installation and execution of the payloads.
Studying NSIS installers. Wajam is always based on Nullsoft
Scriptable Install System (NSIS [60]), a popular open-source
generator of Windows installers [55]. NSIS uses LZMA as
a preferred compression algorithm and as such, 7-Zip offers
the ability to extract packed files in NSIS-generated installers,
provided they are not using a modified version [41]. We used
7-Zip for unpacking when possible. NSIS also compiles an
installer based on a configurable installation script written in
its own language. Several NSIS-specific decompilers used to
reconstruct the script from installers but trivial modifications
in the source code could thwart such automated tools. 7-Zip
stopped supporting the decompilation of installer scripts in
version 15.06 (Aug. 2015) [4]. We use version 15.05 and
successfully decompile these scripts.
Debugging. We leverage IDA Pro and x64dbg [65] to debug
all binaries to understand some of their anti-analysis tech-
niques. Due to the extensive use of junk code, identifying
meaningful instructions is challenging. In particular, when
reverse-engineering encrypted payloads, we first set break-
points on relevant Windows API calls to load files (e.g.,
CreateFile, ReadFile, WriteFile, LoadLibrary),
then follow modifications and copies of buffers of interests
by setting memory breakpoints on them. We also rely on
interesting network I/O events as seen in Process Monitor to
identify relevant functions from the call stack at that time.

To understand the high-level behavior of decryption rou-
tines, we combine static analysis and step-by-step debugging.
We also leverage Hex-Rays Decompiler to study the decom-
piled code when possible; however, obfuscation sometimes
fails Hex-Rays. Static analysis is also often made difficult due
to many dynamic calls that resolved only at runtime.

C. Results summary

Wajam is composed of several modules, some of them are
specific to a generation. We briefly outline their organization,
then provide a timeline with evolution milestones regarding
anti-analysis and evasion techniques, privacy leaks, and new
prominent features. Then, we demonstrate the efficiency of
such techniques by the AV detection rates on samples fetched
from Aug. to Nov. 2018.
Wajam modules and evolution of anti-analysis techniques.
Wajam’s installer is the first executable an AV gets to ana-

lyze, justifying a certain level of obfuscation that constantly
increased over time. It calls a payload (brh.dll, called
BRH hereafter) to retrieve information about the system and
browsers, e.g., browsing histories, which is then leaked. The
installed binaries comprise the main application, an updater,
and a browser hooker called “goblin” in the 3rd generation,
and a persistence module. Several features and new anti-
analysis techniques were introduced over the years; see Fig. 2.
Antivirus detection rates. We collected and submitted sam-
ples to VirusTotal that we obtain directly from one of Wajam’s
servers. We pool a known URL to retrieve daily samples as
soon as possible after they are released to observe early detec-
tion rates. We show in Fig. 1 the detection rates from Virus-
Total of 36 samples collected between Aug.—Nov. 2018. The
rates are given relative to the release time as indicated by the
“Last-Modified” HTTP header provided by the server. We trig-
ger a rescan on VirusTotal approximately every hour after the
first submission to observe the evolution for up to two weeks.

The figure illustrates the averaged rates for these 36 sam-
ples, along with the overall lowest and highest rate during
each hour. The rates converge around 37 detections out of
about 69 AV engines at the end of the two-week period, and
include most popular AVs with few exceptions. Importantly,
we notice that the rates start arguably low during the first
hours. The lowest detection ratio of 3/68 is found on Aug.
8th’s sample, 19min after its release. The average rate during
the first hour is only about 9.

Wajam is rarely labeled as is by AVs. Rather, they often
output generic names4 or mislabel samples.5 Certain AVs label
Wajam as PUP/not-a-virus/Riskware/Optional;6 however, we
note that depending on the configuration of such AVs, no alert
or action may be triggered upon detection, or the alert may
show differently than for regular malware [24], [21].

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336

Hours after release

3
6
9

12
15
18
21
24
27
30
33
36
39
42

D
et
ec
ti
o
n
ra
te
s

Overall highest

Average

Overall lowest

Fig. 1: VirusTotal detection rates of 36 samples starting from
their release time

4“Win32.Adware-gen”, “heuristic”, “Trojan.Gen.2”, “Unsafe”
5“Adware.Zdengo”, “Gen:Variant.Nemesis.430”
6“Generic PUA PC (PUA)”, “PUP/Win32.Agent.C2840632”, “not-a-

virus:HEUR:AdWare.Win32.Agent.gen”, “PUA:Win32/Wajam”, “Pua.Wajam”,
“Riskware.NSISmod!”, “Riskware”, “PUP.Optional.Wajam”



Domains. We tracked 248 domains used by Wajam for fetch-
ing updates, injecting ads, distributing or signing installers,
domains declared by the company in its legal documents [45],
as well as other domains that were hosted simultaneously from
the same IP address.7 We provide the list in Table X. Those
domains do not change over time, and mostly follow similar
patterns (technologie*.com or *technology.com). During our
study, they were hosted in France (OVH) and the US (Secured
Servers). Some served browser-trusted certificates issued by
RapidSSL until Mar. 2018, then switched to Let’s Encrypt.

2014 Leaks list of installed programs
Inserts root cert. into Firefox trust store
Encrypted strings, disables Firefox SPDY , encrypted
URL injection rules, Chrome injection
Leaks browsing and download histories, encrypted
browser hooker DLL, sends list of installed AVs, Opera
injection
Random executable filenames, .NET obfuscation
Chromium-based browsers injection
Encrypted nested installer
Rootkit
Leaks list of browser add-ons/extensions
Random installer folder name
Encrypted injection updates
Persistence module
Inflated executables
Whitelist itself in MRT, leaks presence of hypervisor,
encrypted .text section
Leaks hypervisor/motherboard vendor
Installers no longer signed
Random icons, XOR-encrypted updater DLL
Disables monthly MRT scans and reports
Steganography to hide nested installer, encrypted
browser info leaking DLL
RC4-encrypted updater
Nested installer under further layers of encryption,
custom compression algorithms info leaking DLL, string
literals from English texts as arguments to functions
Sets Firefox settings to rely on OS trust store and no
longer inserts a root certificate into Firefox trust store
Leaks are sent over HTTPS

2015

2016

2017

2018

Fig. 2: Timeline of first appearance of key features according
to collected samples (colors: black → anti-analysis/evasion
improvements, blue→ new features, red→ information leaks)

VI. ANTI-ANALYSIS AND EVASION TECHNIQUES

Wajam’s installer makes use of several techniques to hide its
payload and thwart static analysis. Some techniques are also
shared with the installed binaries. We detail those numerous
techniques below.

A. Nested installers and steganography

To study the installed application, we could simply unpack
the files from the NSIS installer. In general, however, unpacked
files could be called by the installer with specific parameters,
or be further altered to initiate a second layer of unpacking.
Indeed, starting from C10, only a single encrypted file is
packed in the installer. The decryption of this module is
detailed in Section VI-D.

7We leverage historical DNS data from DnsTrails.com.

Algorithm 1 Double XOR operations in samples 46 and above

Input: ciphertext c, first key key1, second key key2
Output: plaintext p
p← []
for i from 0 to len(c)− 1 do
p[i]← c[i]⊕ key1[i mod len(key1)]
key1[i]← p[i]
p[i]← p[i]⊕ key2[i mod len(key2)]
key2[i]← p[i]

end for

Starting from D14, Wajam’s installer unpacks a handful
of small DLL files along with a large picture or audio file,
including MP3, WAV, BMP, GIF, PNG. At first, this media
file appears to contain only random audio noise or colors and
could play the role of a confounder only useful to arbitrarily
inflate the installer’s size (cf. [26]). In reality, the installer
script instructs NSIS to call a function from one of the DLLs,
which in turn reads and reassembles a payload hidden in the
media file. For instance, in D14, an MP3 file is composed of
MPEG frames starting with a four-byte header and followed
by 622 bytes of data. We found that the DLL extracts and
concatenates the data section from each frame to reconstruct
a GZip file, which in turn reveals a second NSIS installer. This
nested installer contains the actual files to install and is guided
by a several-thousand lines obfuscated NSIS script.

With time, the techniques become more sophisticated. In
particular, the payload may start at a random offset of a data
section to thwart effort that may fingerprint known formats in
such areas. Furthermore, we found several layers of encryption
and a non-standard compression technique to replace GZip.
See Table III for examples of techniques we uncovered. The
double XOR operation mentioned in this table is detailed in
Algorithm 1.

B. Obfuscation

The code responsible for decoding the payload in media
files or enabling some other features (detailed in Section VII),
is itself heavily obfuscated using a large amount of junk code.
including numerous added layers of functions that 1) perform
string manipulation on large random strings, 2) perform inter-
register operations, 3) call Windows library functions that only
swap or return some fixed values, 4) test the result of such
dummy functions, or 5) large dead conditional branches. Junk
code can usually be detected because its output is not used
elsewhere in the program. In Wajam, the junk code often
checks and changes global variables (BSS section), resulting
in non-deterministic behavior that may prevent junk code
removal techniques from recognizing these functions.

Moreover, calls to such functions pass as argument unique
strings of random characters, or brief extracts from public
texts, e.g., we found the Polish version of Romeo and Juliet.
likely in an effort to avoid function prototype fingerprinting
and clone detection, Useful functions are thus difficult to iden-
tify. Similar to the installer, the main binary and the updater



TABLE III: Steganographic techniques to hide a nested installer in samples from end-2017 to 2018

ID Hidden in Payload reconstruction Encryption/Compression Encryption keys
D14–15 MP3 Concatenated MPEG frame data plaintext (GZip) Not applicable
D16 MP3 Concatenated MPEG frame data custom encryption Not applicable
D17 GIF In section after LSD + custom offset 2 XORs + custom compression 2njZEYFf, qsjmoRZ7FM
D18 BMP BitmapLine section + custom offset custom encryption + 2 XORs +

custom compression
ldXTyqwQ, ckXKI19jmC
(XOR keys only)

D19 WAV First DataChunk samples + custom offset 2 XORs + custom compression 47txnKuG, eyimwKIOBG

are filled with junk code and added string arguments to dummy
functions. However, this time the strings are either random, or
taken from The Art of War by Sun Tzu starting in D17.

Furthermore, external library calls are made dynamically
by calling the LoadLibrary API function provided with a
DLL name as argument, generated at runtime using complex
string manipulations. In D17, the DLLs that read and decode
media files contain more than 2000 and 400 junk functions,
respectively, that can be called up to a dozen times each. The
resulting call graph is unhelpful.

C. Digital signatures

Early samples were digitally signed by COMODO or
thawte, which could help the installer appear legitimate to
users when prompted for administrative rights (when dis-
tributed as a standalone app), and lower detection by AVs [32].
The signature disappeared from sample D9, shortly after
Wajam was sold to IMTL. This move could be explained as
signatures could help antiviruses to fingerprint the installer, or
simply because Wajam already inherits from admin privileges
from the software installer that runs it. We note that installed
system drivers are still signed as a signature is required by
Windows. They are signed by certificates issued by DigiCert
or GlobalSign, to domain names that belong to Wajam.

D. Encryption

Various encryption layers are leveraged at different stages
of the installation and runtime, which evolve across variants.

1) Installer: Installers from 2016 to mid-2017 (C10–C16,
D1–D10) contain a file, often named wie.dat, that is de-
crypted by the primary NSIS installer, although not by using its
installation script and external DLLs. Each file footer contains
a 64-byte random key, used to decrypt the rest of the file using
RC4, which reveals the nested NSIS installer. Table VI lists
the keys we recovered for such samples.

Samples that rely on steganography add a layer of decryp-
tion after the payload is recovered from the media files, starting
from D16. In certain media formats, it is possible to observe
18 or more printable characters towards the beginning of the
payload. This string is split into two keys that are combined
with XOR operations to decrypt the rest of the payload.

2) DLL/side executables: Steganography-based samples
D14–18 further protect the BRH, by XORing it with a
random string found in a stub DLL. Due to the challenges
in understanding the decryption routine to find the key, we
found that it is easier to brute-force the decryption with all
printable strings from that stub DLL until an executable format
is decrypted. Alternatively, since parts of the PE headers are

predictable, it is possible to recover this key using a known-
plaintext attack. However, since D17, this attack is no longer
possible as the plaintext is further compressed using a custom
method for which there is no known fixed values. Table IV
lists the keys we recovered for the BRH.

TABLE IV: Decryption keys for the DLL used to retrieve
information about the system and browsers (brh.dll) found
encrypted in samples from end-2017 to 2018

ID XOR key Output
D14 NAF6TDWRR8H0E3 plaintext
D15 K3H20MKNH5UZKO plaintext
D16 AVBZALVDGSAQ2MXF1WHE3XU plaintext
D17 0BYRGU14TWHBNTQ0P custom compression
D18 RR5TQZ88AL6E7Z4NS8 custom compression
D19-23 (not fully RE’d) (not fully RE’d)

Similarly, the goblin DLL is compressed and encrypted
starting from C6 using RC4 and a hardcoded 16-byte key.
The key is located in the main executable and can be found
by extracting all strings and trying them to decrypt the DLL
until a valid GZip header appears. The DLL is sometimes
decrypted at runtime and written back to disk to be injected
directly into browser processes. It is inflated by appending
10MiB of apparently random data, and by changing its name
and the name of the exported function to random ones. Table V
lists the keys we recovered for the goblin module.

TABLE V: Decryption keys for the “goblin” DLL injected into
browsers in samples from the third generation

ID Key Type DLL name
C6 Q7P6ZTLWMLK6HTU3 RC4 wajam goblin.dll
C7 TKOHVURJCWAXXINA RC4 wajam goblin.dll
C8 CPAU7VKQRI7U8PEK RC4 md5(GUID+‘wajam_goblin.dll’)
C9 NT0DRJ1RJKIWSSA7 RC4 md5(GUID+‘wajam_goblin.dll’)
C10 3ZHLH3HJ4NOW1FVK RC4 md5(GUID+‘wajam_goblin.dll’)
C11 KVFB47HIYXRVNT4T RC4 md5(GUID+‘wajam_goblin.dll’)
C12 BQS1MUAW64ENNRF3 RC4 md5(GUID+‘wajam_goblin.dll’)
C13 HBS57M2BD1OHHK6S RC4 md5(GUID+‘wajam_goblin.dll’)
C14 5682VXAM34MFB5TK RC4 md5(GUID+‘wajam_goblin.dll’)
C15 56B38AXWW2YAAMMH RC4 md5(GUID+‘wajam_goblin.dll’)
C16 1M7O6L9LU4C2KMIK RC4 md5(GUID+‘wajam_goblin.dll’)
C17 T0R00V9B64TR7RKK RC4 md5(GUID+‘wajam_goblin.dll’)

Finally, a separate updater runs a Windows service that
relies on an encrypted payload called service.dat. In
D11–15, the encryption also simply relies on a 16-byte XORed
pattern; however it is not found as plaintext in the main or
updater file. Instead, by XORing a known pattern from the PE
header, we can recover the key. To fix this weakness, samples
starting from D16 switched to RC4, forcing the search of the
key obfuscated in one of the executables.



TABLE VI: Nested installer’s decryption keys for samples from 2016 to mid-2017

ID Nested installer filename RC4 key (64 bytes)
C10 wie.dat AXOD3MTRAXX9ISMKLRE401YOJCJOZZL7NOBDTBJ2033UWCNO9QA6JJFOMROLD5KI
C11 wie.dat 88D03624GQWEZUBFUJZ1PJHWB1UYU5COP8UU3FW4NV1ID85Q8M57PFNFTL4C3YMR
C12 wie.dat RT93UX0MIDZQVMXT2QBZFV5358F477KPLGX1ZCXV4UWPC0ZXZSOR7YF1MGJVLZOY
C13 wie.dat 6OE985384DJTMR44UD2P77BDEHMX03Q603KZT5H7KMTI18A76P6NOBEWGQ92CIED
C14 wie.dat NIFSDC8UDA9I1QZGVXA446WGWI7YC0RZTBYRX50SY57SI3W21U9LZHW3BNN2CZTF
D1 wie.dat R2SFHDEPTV3WGO8ZJUMJ4DW6PXEWDFXZYTX7FA6BA8EKFQVO7FC5X2GCEVKN3H0R
C15 wie.dat A56GE1T9P8EK6O8VFFR4RM6NNX4I1NWYT82EC39WLDBBDS6QMWVYZWTMK3D1NBQ4
D2 wie.dat K0BEB3V1JY0AA5HLWZKTTX95CTWZPM2N0KIWIB8XVZXQ9EM38EG27TOJXACPCGGX
C16 wie.dat 5CFRULZVADR6C05MOFL4IJH6V8UBJ81CID5AQNRS2XVDP2LI03PQ0GQG0HUI7ZTP
D3 wie.dat ZNSNBB99R8EQWIL7VB7NWC0S02ALWLB40RW1C9JDW346IGI81KMYESFMOA89YDO3
C17 wie.dat HA8K2LHUO8D08EQXQJ0IGL0XBBGWFNM0ROGQPNIB3J5WNKYS4TLOAJIBIPXEPYS6
D4 wie.dat SP347G50FVI0O32ESQIKYUDH94GTWI1VX0W56W858VKDFQROEOVN8ZDALVQRAT95
D5 wie.dat D54PD8AE7ZRCBG9HSEZW3IJ38OUNLKQTSGHU8OCL56L8CC6C0G0VA5P5IPN6Z5Y5
D6 chvfcNyhg AK7VBN4JF7LAGY4PO1VFZVV2TUKTOQWOEVOHKSWJB7KSV47WK452RWVDOKWE418P
D7 XUUw8ETr58EQQBUXE2W 3UI7IX2F3L5RKMQUSN5XSDZUOY7WMRWIH1XT3H0U1N4YLYXWRRV9QF87ED4682CW
D8 WrTQxzGTW 090C0U9PUC287RXILDXJ7Y8J0ZMTBMLOB9WJ3E3XV5OLOYF00N1S1RP97OMYGPG5
D9 sGC6 x HNSOWVL1V9SO9W6JA7BTEUOGYR7YPPL3HC5D5SZF51GN90A5OHTCFDT1F5F82EW0
D10 g044B2e 9VMW325WML3F0JBTKIW492R8IQVVYF8THXKPRLGZAFHG5BDSV1GBGQZM1T6ZE0HH

3) Main application: Samples from the beginning of the
3rd generation come with most of their strings encrypted,
which are decrypted at runtime by a simple XOR operation.
There are two flavors depending on the encoding of the
plaintext string: a single-byte key for ASCII strings, and a two-
byte key for Unicode strings. Each string is associated with
one decryption function. Encrypted strings are loaded on the
stack either 4 or 16 bytes at a time (through a 32-bit or XMM
register), probably due to different compiler optimizations. The
lowest stack address and the key are then passed to the in-place
decryption function.

The main executable’s code section is encrypted in D5–10
with a custom algorithm based on several byte-wise XOR and
subtraction operations. Chunks of 456KiB are decoded with
the same logic, while each chunk is decoded differently. Such
samples correlate with installers whose name is prefixed with
“WBE crypted bundle ”, suggesting that the encryption layer
was added after compilation.

The encrypted executable sections are often large and
difficult to parse by a disassembler. In our case, IDA Pro
hangs for more than two hours on sample D9, which contains
4MiB of the byte B9, followed by another 3MiB of encrypted
instructions. It is possible to zeroize the constant part of the
code section to accelerate the parsing by IDA; however, since
most of the program’s code is encrypted, we study dumps of
the running process, once its code section is fully decrypted.

E. Inflated size

Some malware scanners are known to discard large file [15],
[35], hence an obvious anti-analysis technique is to inflate
the size of the executable. Seven samples rely on enlarged
.rdata (C17, D4) or code sections (D6–10), resulting in
binaries ranging from 9 to 26MiB in size. The first type
consists of a large .rdata section that contains strings
duplicated hundreds of times. However, this section contains
actual strings used in the unobfuscated application. Given that
such strings are meant to be decrypted at runtime, it is unclear
why the developers left plaintext strings in the binary, or if
large .rdata sections are at all meant for evasion. Large

code sections tend to slow IDA Pro’s analysis, possibly due
to gibberish instructions parsed.

F. Unique file and folder names

Before B4, the installer unpacks most of the files in a
folder under Program Files. The names of the files and
folders are static and are well connected to Wajam. Executable
filenames appear random in later samples. The installation
folder itself becomes randomized from C14 and D3. The
names are actually derived from the original name combined
with the Machine GUID obtained from registry, and hashed
using MD5.8 The Machine GUID is considered to be a unique
identifier bound to a given installation of Windows and stays
the same until it is reset, which can be triggered by removing
the registry key. As a result, the installed files would always be
named identically on a given instance of Windows for samples
with compatible naming scheme, while the names are different
across machines.

G. Antivirus scanning evasion

Starting from D5, Wajam adds itself to the exclusion list
of Windows Defender in an effort to avoid detection once
Defender could detect Wajam due to a definition update.9

Starting from D12, Wajam also modifies the settings of
Windows Malicious Software Removal Tool (MRT). MRT is
served each month as an update through Windows Update and
performs a malware scan of the system. Wajam disables this
monthly scan. It also disables the reporting of infections to
Microsoft. Figure 3 shows the NSIS script responsible for
changing MRT’s settings, with support for 32-bit and 64-bit
systems.

8For instance, C:\Program Files\WaNetworkEn\wajam.exe be-
comes C:\Program Files\6

¯
86d944556d5de03afc6aa639bff9c7\

06ca8c13762fca02c5dae8e502fd91c9.exe, with the folder name
corresponding to md5(MachineGUID+‘WaNetworkEn’) and the
filename taken from md5(MachineGUID+‘wajam.exe’).

9Wajam inserts the paths of its main components under
HKLM\Software\Microsoft\Windows Defender\Exclusions\Paths



Function func_3030
SetRegView 64
WriteRegDWORD HKLM SOFTWARE\Policies\Microsoft\MRT

DontReportInfectionInformation 0x00000001
WriteRegDWORD HKLM SOFTWARE\Policies\Microsoft\MRT

DontOfferThroughWUAU 0x00000001
SetRegView 32
WriteRegDWORD HKLM SOFTWARE\Policies\Microsoft\MRT

DontReportInfectionInformation 0x00000001
WriteRegDWORD HKLM SOFTWARE\Policies\Microsoft\MRT

DontOfferThroughWUAU 0x00000001
FunctionEnd

Fig. 3: NSIS script to modify Microsoft MRT settings

H. Rootkit capabilities and persistence

We found two samples, C11 and C17, that rely on a kernel-
mode driver to hide the installation folder from the user space,
effectively turning Wajam into a rootkit. Sample C11 remains
even more stealthy as it does not register itself as an installed
program and hence does not appear in the list for users to unin-
stall it. The file system driver responsible for hiding Wajam’s
files is called Lacuna and is either named pcwtata.sys or
similar, and is signed by DigiCert. We also found an update
package (C18) that also comes with this driver.

Wajam establishes persistence through executables or
scripts that are left in the C:\Windows folder and not
removed by uninstalling the product. While executables could
be detected by antiviruses, Wajam leverages (obfuscated)
Powershell scripts in samples C17, D3 and D12–13. A
scheduled task is left on the system to trigger the persistence
module at user logon. From D14 onward, the persistence
module is a regular executable, inheriting some anti-analysis
techniques previously mentioned, and set up as a Windows
service that starts at boot-time. The module checks for the
presence of the installation directory and main executable. If
they do not exist, the module follows the process of updating
the application by querying a hardcoded URL to download a
fresh variant. This behavior is mostly intended for reinstalling
the application after it has been uninstalled, or removed by
an antivirus. However, we found that the hardcoded URL
is not updated throughout the lifetime of the module on the
system, and could be inaccessible when necessary.

I. .NET and Powershell obfuscation

In the FiddlerCore generation, the Windows service is
responsible for adjusting the browser proxy settings and
launching the FiddlerCore-based network proxy written in
C#. Samples from 2014 are not obfuscated and the C#/.NET
components are decompilable. Starting from sample B4, the
method and variable names of C# components are randomized.
The deobfuscator de4dot [3] detects that Dotfuscator [43] was
used to obfuscate the program; however, only generic method
and variable names were reconstructed. Also, de4dot does
not remove obvious dead code. Indeed, useful lines of code
are interleaved with string declarations made of concatenated
random strings. Since such strings are never used, except
possibly in the declaration of other such strings, they are easy
to remove automatically.

∩ =

Fig. 4: Icon polymorphism with slight pixel alteration

Fig. 5: Icons used in the Wajam’s installers we collected

The Powershell persistence module consists of a long en-
crypted standard string, using a user-specific key. As the
script runs with SYSTEM privileges, only this account can
successfully decrypt the string, revealing another Powershell
script that is then invoked. Since decrypting such strings is
not directly allowed, the script converts the standard string
to a SecureString, creates a PSCredential object, and sets
the SecureString as the password. Then, it obtains the plaintext
password from this object.

J. Polymorphic icon

Early versions of Wajam shared the same icon on their
installers. The icon is later changed between variants at few
random pixel locations. The color of these pixels is slightly
altered to give a new icon while remaining visibly identical,
see Figure 4. As a result, the hash of the resource section
varies, preventing easy resource fingerprinting. Starting from
D11, Wajam pick random icons from third party icon libraries
for both the installer and installed binaries. An illustration is
given in Figure 5.

K. Summary: Integration of the techniques

Wajam leverages several techniques and layers to hinder
static analysis, fingerprinting, reverse engineering, and an-
tivirus detection. A typical sample from 2018 is an NSIS
installer with a random icon that unpacks DLLs that find,
deobfuscate, decrypt and uncompress a second-stage installer
from a media file. In turn, this second installer executes
a long obfuscated NSIS script that first calls an unpacked
DLL to decrypt and load its BRH companion to perform
a number of leaks (see Section VII). Then, it installs the
main obfuscated Wajam files under Program Files with names
following the md5(GUID+‘filename’) pattern. It also
adds a persistence module in the Windows directory along
with the generated TLS certificate in an ‘SSL’ subdirectory,
and a signed network driver in the System32\drivers
folder. The installer creates three Windows services: 1) the
network driver, 2) the main application, 3) the persistence
module; and a scheduled task to start the second service at
boot time if not already started. It disables MRT monthly
scanning and reporting. The main application starts by reading
the encrypted updater module, decrypting and executing it. In



turn, the module reads the encrypted injection rules, updates
them and fetches program updates.

VII. LEAKS

Beyond installing the files onto the system, the installer
also performs other core tasks, including the generation of
unique IDs, leaking browsing and download histories, and the
presence of AVs.

A. Unique IDs

Two unique identifiers are generated during installation,
and written in the Windows registry. All requests made to
Wajam’s servers include these identifiers. The first one, called
unique_id or uid is generated as the uppercased MD5
hash of the combination of: 1) the MAC address of the main
network adapter, 2) the path for the temporary folder for
applications (which contains the user account’s name), and
3) the corresponding disk’s serial number. The calculation of
second identifier, machine_id or mid, appears to intend
including the Machine GUID; however, a programming error
fails to achieve this goal, and instead includes some artifact
of the string operations performed on the MAC address. In
our case, the mid was simply the MAC address prepended by
a “1”. This issue was never fixed. These identifiers are used
for ad tracking, and to detect repeated installations to identify
pay-per-install frauds by Wajam distributors (i.e., a distributor
faking numerous installations to increase its revenue from
Wajam) [42].

B. Leaking personal and browser info

In A2, the installer sends a verbose instal-
lation log over plain HTTP to a script named
client_send_debug_info.php on wajam.com. The
POST request contains full paths including the user’s home
directory, along with the network adapter’s MAC address,
the drive’s serial number, and the unique IDs mentioned
above. This behavior occurred only in this sample. Given
the name of the target script and the single occurrence of
such installer, the sample could be a version intended for
debugging purposes only.

Starting from B1, the installer leaks the list of installed
programs as found in the registry, minus Microsoft-specific
updates in some cases. The leak may happen several times
during the installation, possibly due to multiple components
leaking this information. The OS version and the date of the
installation obtained from Wajam’s own timestamping service,
are also sent in each queries.

From C6, the browsing history of IE, Firefox and Chrome is
sent in plaintext to Wajam’s servers, and the history of Opera
from D6. Only the newest sample we analyzed, dated from
July 2018, sends this information over HTTPS. This leak is
the most privacy-sensitive. For users who do not configure an
expiration of their history, the leak could span over several
months worth of private data. In Chrome, the local history
expires after three months [6], mitigating the extent of the
leak; however, other browsers do not expire their history,

which could last for years. In parallel, the download history,
i.e., the URLs of downloaded files, is also sent in plaintext
except in the latest sample. Functions exported by the DLL
in charge of collecting this data have explicit names, e.g.,
SendAllBrowsersDownloadHistory.

After the installation, Wajam continues to send the list of
browser addons/extensions and installed programs whenever it
fetches updates from the server.

Later samples dated after the end of 2016 (from D5) also
check the 31st bit of the feature flags stored in ECX as returned
by the CPUID instruction, indicating whether the program
is running in a virtual machine environment. The result is
appended to all HTTP(S) queries made by the installer. The
installer also invokes Windows Management Instrumentation
(WMI) to obtain the BIOS manufacturer name and appends
it to the queries. We are unsure about the consequences of
reporting that Wajam is installed in a hypervisor. We still
observed fully functional and apparently complete updates,
and could observe injected ads.

C. Antivirus detection

In every sample since C6, Wajam looks for the presence of
a series of 22 major antiviruses and other endpoint security
software, then attaches the list of detected products to almost
every query. Notably, not all of products belong to home
products. For instance, AhnLab and McAfee Endpoint only
offer products to businesses, raising concerns that Wajam also
targets enterprises specifically. The list of security product
and/or vendors that Wajam searches for are listed in Table VII.

TABLE VII: Security solutions checked by Wajam in registry

AVAST Software Microsoft Antimalware
AVG Norman Data Defense Systems
AhnLab Norton
Avira Panda Security
BitDefender Safer Networking Limited
BullGuard Ltd. SUPERAntiSpyware.com
ESET TrendMicro
KasperskyLab UnThreat
Malwarebytes Anti-Malware VIPRE Internet Security
McAfee Endpoint WRData
McAfee MSC Zone Labs

VIII. UPDATES

We discuss in this section the auto-update mechanism that
allows Wajam to update the whole application, the injections
rules, or the browser hooking configuration. Updates are
fetched upon first launch, then Wajam waits for a duration
indicated in the last update (from 50 to 80 minutes in our
tests), before it updates again.

A. Encryption

While early samples fetched plaintext update files, all recent
samples and the whole 4th generation are downloading en-
crypted files. The decryption is handled in an encrypted DLL
loaded at runtime. We found that Wajam uses the MCrypt
library to decrypt updates with a hardcoded key and IV using
the Rijndael-256 cipher (256-bit block, key and IV) in CFB-8
mode. The key and IV are the same across all versions.



B. Program update

Wajam starts by querying hardcoded URLs
for an update or manifest file, gen-
erally located at /webenhancer/update,
/browserenhancer/update or /proxy/manifest
on the remote server. Several parameters are passed, including
Wajam’s version, supposedly to provide relevant updates.
The list of detected security solutions is leaked at this
point. If an update is available, the URL where to fetch
a ZIP package is provided. The ZIP file is uncompressed
into the installation directory. Wajam is known to have
been updated frequently to avoid antivirus detection [42];
however, the software update manifest we fetched did not
specify any available update package to download. We
did find two update packages from a malware database,
samples C18–19, showing the possibility of updating the
application. These two samples contain the main executables
and DLLs for 32 and 64-bit systems, with a clear naming
convention, e.g., wajam.exe, wajam_goblin_64.dll.
A patcher.cfg file contains various parameters including
the base name of the executables, i.e., wajam, the service
name it should be installed with, e.g., WajIEn Monitor,
and the type and name of the driver file. In C18, the driver
type is explicitly called HIDING_DRIVER and refers to the
filesystem driver that hides the installation folder. In C19,
such a driver is not included.

C. Traffic injection rules

Except the first generation, others also fetch
an injections or mapping file (located at
/addon/mapping or /webenhancer/injections)
containing a list of domains and instructions to inject scripts.

The injections/mapping file is a JSON structure that contains
“supported websites”. For each website, a list of regular
expressions are provided to match URLs of interest, often
specifically about search or item pages, along with a specific
JavaScript and CSS URLs to be injected from one of Wajam’s
several possible domains. The rules also include HTTP headers
or tags to be added or removed. Since the content injection
relies on loading a remote third-party script, browsers may
refuse to load the content due to mixed-content policies or
the Content Security Policy (CSP) configured by the website.
Mixed-content is addressed by loading the script over the same
protocol as the current website. For websites that specify a
CSP HTTP header or HTML tag, Wajam is able to remove
this CSP from the server’s response before the browser sees
it, to ensure their script is properly loaded. Figure 6 shows an
example of an injection rule (after formatting) where the CSP
header is to be dropped from facebook.com.

The injection rules fetched between Feb. to July 2018
always include 100 regular expressions to match the domains
of major websites, with only one change during this period.
The injected domains include popular search engines, social
networks, blogging platforms, and various other localized
businesses in North America, Western Europe, Russia, and
Asia. The list contains notable websites, e.g., Google, Yahoo,

[facebook]
[domains]
[0] => facebook

[patterns]
[0] =>
ˆhttps?:\/\/(www\.)?facebook.com(?!(\/xti\.php))

[js]
[0] =>
se_js.php?se=facebook&integration=searchenginev2

[css]
[headers]
[remove]
[response]
[0] => content-security-policy

Fig. 6: Example of traffic injection rule for facebook.com
that matches all pages except xti.php

Bing, TripAdvisor, eBay, BestBuy, Ask, YouTube, Twitter,
Facebook, Kijiji, Reddit, as well as country-specific web-
sites, e.g., rakuten.co.jp, alibaba.com, baidu.com, leboncoin.fr,
willhaben.at, mail.ru. The total number of websites that are
subject to content injection is not easy to quantify due to the
nature of some URL matching rules, e.g., in the case of the
blogging platform Wordpress, blogs are hosted as a subdomain
of wordpress.com and Wajam’s rules match any subdomain,
which could be several millions [64].
Bootstrap and cache. The first update is fetched from a
hardcoded URL. Later updates are made based on the “up-
date url” parameter found in the previously fetched file. Once
the injection rules are downloaded, they are stored in the
program’s folder in plaintext in a file named WJManifest for
early samples (i.e., B2 and earlier), or encrypted as is in a file
named waaaghs or its obfuscated version (see Section VI-F).

D. Browser injection rules

The third generation specifically retrieves a config file
(/webenhancer/config) with offsets to functions to be
hooked in a number of browsers and versions. An example
of hooking parameters is given in Figure 7. Unlike the traffic
injection rules, the browser injection rules are preloaded in
the installer. Hence, it is possible to study their evolution
in time. These rules are cached in a similar way as the
traffic injection rules, under a file named snotlings or its
obfuscated version.
History. The earliest third generation sample (Nov. 2014,
C1) only includes addresses of functions to be hooked for
47 versions of Chrome, from version 18 to 39. The file
also lists supported versions of IE and Firefox, although
old and without specific function addresses. In Sept. 2015
(C6), Wajam introduces the support for seven versions of
the Opera browser. Two months later, five other Chromium-
based browsers are introduced, of which four are adware, i.e.,
BrowserAir, BoBrowser, CrossBrowser, MyBrowser; and one
is a legitimate browser intended for the Vietnamese population,
i.e., Coc Coc. By Jan. 2016 (C10), 200 versions of Chrome
are supported, up to version 49.0.2610.0 with finer granularity
for intermediate versions.



[hooks]
[chrome]

[...]
[66_0_3353_2]

[32bits]
[PR_Close] => 0x0181C296
[PR_Write_App] => 0x01824532
[SSL_read_impl] => 0x01817684

[64bits]
[PR_Close] => 0x02318A7C
[PR_Read] => 0x02312A0C
[PR_Write] => 0x0232307C
[PR_Write_App] => 0x0232307C
[SSL_read_impl] => 0x02312A0C

Fig. 7: Browser injection rule for Chrome 66.0.3353.2

Although we did not capture any new sample from the third
generation dated past Jan. 2016, we noticed that the browser
injection rules are kept up-to-date, suggesting that this gener-
ation is still actively maintained and distributed. In an update
from July 2018, we count 1176 supported Chrome versions
including the latest Canary build, and additional Chromium-
based browsers, e.g., Torch, UC Browser, and Amigo Browser.
Versions of Opera are outdated by more than a year. Other
Chromium-based browsers only have entries for a limited
number of selected versions.
Injection methods. The third generation of Wajam injects a
DLL into browser processes, which further hooks a number
of functions to manipulate the traffic. While the offsets of the
functions are available in the hourly update for Chromium-
based browsers, IE and Firefox do not require additional in-
formation since the functions to be hooked are readily exported
by wininet.dll (in the case of IE) and nss3.dll (for
Firefox), and hence can be found easily at runtime. Given the
names corresponding to the addresses found in this update file,
e.g., PR_Write, SSL_read_impl, Wajam seems to follow
the same function hooking strategy to inject content in the
network traffic as the Citadel malware [53].

Wajam avoids intercepting non-browser applications as ev-
ident from a blacklistlist of process names in the update
file, e.g., dropbox.exe, skype.exe, bittorrent.exe. Additionally,
a whitelist is also present, including the name of supported
browser processes; however, it appears not to be used.

Furthermore, Wajam seems to have had difficulties handling
certain protocols and compression algorithms in the past.
It disables SPDY in Firefox. Before Chrome version 46,
Wajam also modifies the value located at a given offset
that represents whether SPDY is enabled to disable this
feature. Similarly, the SDCH compression algorithm is dis-
abled. The number of functions to be hooked evolves from
one version of the browser to another, with a different
set for 32 and 64-bit versions, sometimes including only
PR_(Read, Write, Write_App, SetError, Close), or
also SSL_read_impl.

E. Injected content

On selected pages (detailed in Section VIII), Wajam injects
a JavaScript and CSS right before the </head> tag. The
scripts were either self-contained in early samples, or inserting

remote scripts with parameters including Wajam’s and the
OS versions/architecture (32 or 64 bits), the two unique IDs
discussed in Section VII, an advertiser ID, and the installation
timestamp. See Figure 8 for an example of injected content.
The remote JavaScript URL to insert in the page is dependent
on which website is visited. In particular, two categories
of websites are distinguished: search engines, and shopping
websites. We give below an example for each case.
Search engines. There are three possible behaviors that we
observed when visiting a search engine website. For instance,
when searching on google.com, Wajam can change the action
on the first few results’ links returned by Google. In effect,
when a user clicks on these results, the original link opens
in a new browser tab while the original tab loads a series
of ad trackers (including Yahoo and Bing) provided with
the keywords searched by the user, and eventually lands
on an undesirable page, e.g., a search result page from
informationvine.com about foreign exchange. Alternatively,
the script may just redirect the user to searchpage.com, a
domain that belongs to Wajam, which in turn redirects to
a Yahoo search result page about the user’s original search
keywords. A user may not notice that her original search
on Google is eventually served by Yahoo. In the mean-
time, her keyword searches were sent to Wajam’s server.
Also, the Yahoo result URL contains parameters that may
indicate an affiliation with Wajam, i.e., hspart=wajam
and type=wjsearchpage_ya_3673_fja6rh1. Finally,
Wajam may simply insert several search results that it fetched
from its servers, as the top results. Wajam performs a seamless
integration of those results in the page, breaching the trust that
a user has in the search engine results. This behavior is part
of a patent owned by Wajam Internet Technologies Inc [8].
Shopping websites. When searching on ebay.com, Wajam
loads a 180KiB JavaScript file (more than 7700 SLOC)
that contains the Priam engine intended to retrieve search
keywords, fetch related ads, and integrate them in the page.
The capabilities of this engine seem extensive, explaining its
size. Inserted ads are shown at the top of the result list in
a large format, also seamlessly integrated, thanks to injected
CSS. When the user clicks one of the ads, she is redirected to
a third party website that sells a product related to her search.

In both cases, the unique ID generated by Wajam’s installer
(the uid) accompanies each URL pointing to Wajam’s do-
mains. In the end, both Wajam and the advertisers can build
a profile of the user based on her searches.

IX. OTHER SECURITY ISSUES CAUSED BY WAJAM

We describe below other security vulnerabilities in Wajam,
and security issues it introduces on user machines.

A. Downgraded TLS security

The second and fourth generations leverage a TLS proxy
to intercept HTTPS traffic; we briefly investigate it against
common security issues, cf. [19].



<script data-type="injected" src="//technologietravassac.com/addon/script/google?
integration=searchenginev2&har=2&v=n11.14.1.86&os_mj=6&os_mn=1&os_bitness=32&
mid=b8230ac083f9fb5067a66e03b4882491&uid=B77FCD732C2E5337FF907BFAA44758D1&aid=3673&aid2=none&
ts=1531782569&ts2="></script>

<link rel="stylesheet" type="text/css" href="//main-social2search.netdna-ssl.com/css/cdn/
min_search_engine_v2.css?wv=1.00434"/>

Fig. 8: Example of injected content on google.com

1) Private key generation: The second generation
relies on FiddlerCore, which inserts a new root certificate
during installation, generated with Microsoft’s MakeCert
utility, with a randomly-generated RSA-1024 key. The
certificate’s CN varies among samples and includes
“Wajam root cer”, “WNetEnhancer root cer”, and
“WaNetworkEnhancer root cer”, and previously has been
reported as an indication of Wajam infection [54], [12].

In the fourth generation, Wajam leverages NetFilter to
intercept connections and ProtocolFilters as a TLS proxy.
ProtocolFilters relies on OpenSSL; however, IDA FLIRT was
unable to identify any OpenSSL-related functions, even with
added signatures from [30]. Considering Wajam’s large obfus-
cated binary file, this becomes an issue to locate the code of
the root certificate generation.

NetFilter is statically linked with OpenSSL, as indicated
by hardcoded strings (e.g., “RSA part of OpenSSL 1.0.2h 3
May 2016”), which helps us determine the exact version
of OpenSSL used, and easily label a number of essential
OpenSSL functions that call ERR_put_error(). Indeed,
such calls specify the source file path and line number where
an error is thrown, which uniquely identifies a function. By
investigating the use of several such functions, we could
identify the part responsible for generating the root certificate.

The function of interest can either generate a RSA-2048
private key or use a default hardcoded one. We found that it
uses the default one for the generation of the root certificate.
We successfully matched this private key to the root certificate
that was installed in the Windows trust store. We performed
an MITM attack on our test system designed to verify whether
the TLS proxy logic accepts its own root certificate as a valid
issuer for site certificates, and the sample accepted our cer-
tificate for a test domain. Consequently, all an attacker needs
to impersonate any HTTPS websites to a machine running
Wajam’s fourth generation, is to know the root certificate’s
CN to properly chain generated certificates. However, in this
generation, the CN is generated based on the Machine GUID,
similar to installed file names.

2) Common Name generation: We investigated the gener-
ation of the CN across samples and report our findings in
Table VIII. The name is the 16 first hexadecimal charac-
ters of the MD5 hash of the Machine GUID concatenated
with various aliases of Wajam depending on the samples
(e.g., SrcAAAesom), resulting in e.g., 3fd59c0fada5d9ad.
Recovering this algorithm is not straightforward as several
intermediate functions separate the CN generation from the
certificate generation. We first identify the function in charge
of retrieving the Machine GUID from the registry, and label

TABLE VIII: TLS root certificates in generations 2 and 4

ID Root certificate’s Common Name
B1–B3 Wajam root cer
B4–B5 WNetEnhancer root cer
B6 WaNetworkEnhancer root cer
D1–D2 md5(GUID+‘WajaInterEn’)[0:16]
D3 md5(GUID+‘WNEn’)[0:16]
D4 md5(GUID+‘Social2Se’)[0:16]
D5–D8 md5(GUID+‘Socia2Sear’)[0:16]
D9 md5(GUID+‘Socia2Se’)[0:16]
D10 md5(GUID+‘Socia2S’)[0:16]
D11 md5(GUID+‘Soci2Sear’)[0:16]+‘ 2’
D12–D21 md5(GUID+‘SrcAAAesom’)[0:16]+‘ 2’
D22–D23 base64(md5(GUID+‘SrcAAAesom’)[0:12])+‘ 2’

the parent responsible for concatenating a given string to it
and applying the MD5 hash. Then, we identify the function
that writes the certificate to a file named after the CN, and
trace the origin of the filename to a function that calls the
previously labeled function. The argument passed in the call
corresponds to the concatenated string. After observing in a
few samples that the concatenated string matches the registry
key of the installed application, we simply proceed to try
this key to match the generated certificates in other samples.
The various application names can be found in Table VIII.
In the last two samples (D22–23), the process is similar;
however, only the 12 first hexadecimal characters of the MD5
hash are taken into account, which are further encoded using
base64 giving e.g., ZmJiYmRiODYxNTZi. We also found
that samples branded as SearchAwesome install a certificate
with a CN appended with the digit “2”, corresponding to a new
feature in ProtocolFilters that appeared in May 2015 [52].

Since the Machine GUID is unpredictable and generally
unknown to an attacker, and since the resulting CN carries at
least 48 bits of entropy (starting from D22, 64 bits in prior
samples), crafting certificates signed by a target Wajam’s root
certificate is generally impractical. Indeed, an attacker would
need to serve an expected number of 247 certificates to a victim
before one is accepted. We note that environments with cloned
Windows installations across hosts could be more vulnerable if
the Machine GUID is not properly regenerated on each host, as
it is possible to obtain it from a single host with few privileges.

3) Certificate validation: FiddlerCore-based samples (2nd
generation) properly validate server certificates. To verify the
fourth generation’s server-side certificate validation, we faked
a DNS response for google.com to point the domain to our
own server and served test certificates. We found that Wajam
performs certificate validation and rejects self-signed certifi-
cates. However, it does not perform hostname validation, and
even replaces the CN in the server certificate with the domain

google.com


requested by the client. As a consequence, a valid certificate
for example.com is accepted by Wajam for any other domain.
The certificates seen by the client does not reflect example.com
but rather the domain that was requested. The browser accepts
the certificate since it trusts Wajam’s root certificate.

Swapping the CN with the requested one is mitigated since
1) CAs include a Subject Alternate Name (SAN) extension in
their certificates, which is copied from the original certificate
by ProtocolFilters, and 2) browsers ignore the CN field in a
certificate if a SAN extension is present. In particular, Chrome
rejects certificates that do not contain a SAN [47]. Conse-
quently, if an attacker obtains a valid certificate for any domain
and without a SAN extension, they are still able to perform a
MITM attack against IE and Firefox when Wajam is installed.

Despite the deprecation of CN as a way of binding a
certificate to a domain [46] in 2000, Kumar et al. [34] recently
showed that one of the most common error in certificate
issuance by public trusted CAs is the lack of a SAN extension.
For the sake of our experiment, we inserted our own root
certificate in the Windows trust store and issued a certificate
without SAN for evil.com. It was successfully accepted by Wa-
jam when visiting google.com, and the certificate it generated
as a result was accepted by IE.

B. Downgraded website security

Wajam removes CSP headers from the server’s response on
mail.ru, Yandex, Facebook, flipkart.com, Yahoo Search, and
the X-Frame-Options from rambler.ru. Such behaviors
not only allow injected scripts to be successfully loaded,
but also effectively downgrade website security (e.g., XSS
vulnerabilities may become exploitable).

The traffic injection rules also support header modifications
in the HTTP request, e.g., removal the Referer and Origin
headers. Other response headers are also removed in some
cases, including Access-Control-Allow-Origin,
which would allow the given website’s resources to be
fetched from different origins than those explicitly allowed by
the website, or X-Frame-Options, enabling the website
to be loaded in a frame.

C. Hijacking updates with persistence

Traffic injection rules are always fetched over plain HTTP.
Before mid-Feb. 2018 (D18), software updates are also fetched
over HTTP. Although updates are encrypted, an attacker
who understands the encryption algorithm and extracts the
hardcoded key/IV from any Wajam sample in the last few
years, is able to forge updates and serve them to a victim
through a simple MITM attack.

As a proof-of-concept, we targeted a prominent banking
website, which we will refer as bank.com. We suppose that
this bank offers online banking and that its login interface
is served on https://login.bank.com. We craft an update file
that instructs Wajam to insert a JavaScript file of our choice,
hosted on our own server, and encrypt it using the key that
we recovered in Section VIII-A. The plaintext traffic injection
rule is provided in Figure 9. Once the update is fetched by

{"version":"1",
"update_interval":60,
"base_url":"\/\/attacker.evil\/",
"supported_sites":

{"bank":
{"domains":["bank"],
"patterns":["ˆhttps?:\\\/\\\/login\\.bank\\.

com"],
"js":["bank.js"],
"css":[],"version":"1"}},

"process_blacklist":[],
"process_whitelist":[],
"update_url":"https:\/\/attacker.evil\/mapping",
"css_base_url":"\/\/attacker.evil\/css\/",
"url_filtering":[],
"bi_events":[],
"url_tracking":[],
"protocols_support":

{"quic_udp_block":1}}

Fig. 9: Plaintext traffic injection rule to insert a malicious
script on login.bank.com located at //attacker.evil/bank.js, and
redirect future update queries to https://attacker.evil/mapping

Wajam (i.e., after around an hour, or at boot time), and upon
visiting the bank’s login page, our malicious script is loaded on
the bank’s page and is able to manipulate the page’s objects,
including listening to keystroke events in the username and
password fields. No default cross-origin policy would prevent
our attack. If the bank’s website implemented a CSP, it could
be removed by specifying the HTTP header to drop from the
server’s HTTP response.

Moreover, updates systematically contain the URL of the
next update to fetch. Once Wajam downloads an update and
caches it to disk, it does not use its hardcoded URL anymore.
Hence, the effect of a compromised update is persistent. Our
malicious update also instructs Wajam to fetch further updates
from our own server, which alleviates the need to repeatedly
perform MITM attacks.

A similar attack could be possible against the software
update before D18, which would enable an attacker to inject its
own binary that will be run with SYSTEM privileges; however,
we have not tested this attack. Starting from D18, software
updates are fetched over HTTPS and it appears that Wajam
properly validates the server certificate, mitigating this attack.

X. DIRECTIONS FOR BETTER DETECTION

Security solutions overall fail to statically analyze Wajam’s
installers and binaries. Unless such binaries are submitted for
analysis, possibly because they look suspicious and endpoint
solutions may decide to upload them to the antivirus cloud,
Wajam can still be installed on most user systems due to its
daily polymorphic installer. We identified simple fingerprints
that could hint at an infection, either from the host or network
activities. First, Wajam registers an installed product on the
system using either a known registry key or known names
(e.g., SearchAwesome), which could be blacklisted. Then,
it tries to add its installation folder and network driver as
exceptions for Windows Defender, which could help locate
Wajam’s binaries. Moreover, Wajam uses a long but bounded
list of domains so far. A simple domain blacklist would

https://login.bank.com
login.bank.com
//attacker.evil/bank.js
https://attacker.evil/mapping


TABLE IX: Fingerprints for Wajam-issued leaf certificates (SQL regular expression syntax)

Operator Issuer Distinguished Name
= emailAddress=info@wajam.com, OU=Created by http://www.wajam.com, O=WajamInternetEnhancer, CN=Wajam root cer
= emailAddress=info@technologiesainturbain.com, OU=Created by http://www.technologiesainturbain.com, O=WajamInternetEnhancer, CN=WNetEnhancer root cer
= emailAddress=info@technologievanhorne.com, OU=Created by http://www.technologievanhorne.com, O=WajamInternetEnhancer, CN=WaNetworkEnhancer root cer
REGEXP ˆemailAddress=info@technologie.+\.com, C=EN, CN=[0-9a-f]{16}$
REGEXP ˆC=EN, CN=[0-9a-f]{16} 2$
REGEXP ˆC=EN, CN=(([YZMNO][WTmj2zGD][FEJINMRQVUZYBAdchglk][h-mw-z0-5]){4}) 2$

prevent Wajam to communicate with its servers and leak
private information. Samples communicating in plaintext can
further be fingerprinted due to the URL patterns and type
of data sent, i.e., list of installed programs. Later samples
that leverage HTTPS at install-time and later to fetch updates
could still be fingerprinted due to known domains present in
the TLS SNI extension, or simply by blacklisting correspond-
ing IP addresses. Since daily variants of Wajam are served
from known domains at known locations, it is possible for
security solutions to constantly monitor these servers for new
samples and create corresponding signatures earlier. When a
new system driver is installed, additional verifications could
quickly find out Wajam’s network driver as it is signed with
a certificate for one of the known domains.

Finally, we were able to build fingerprints for Wajam-issued
certificates, shown in Table IX. It is possible to match a
leaf certificate’s distinguished name (DN) with our patterns
to confirm whether it has been issued by Wajam. They may
be particularly relevant if integrated into browsers to warn
users. Chrome already detects well-known software perform-
ing MITM to alert users of possible misconfigurations or
unwanted interceptions [22].

The use of ProtocolFilters can also be fingerprinted by
the files and folder structure it sets up. Online searches for
malware “2.cer” and “SSL” “cert.db” “*.cer” yield several
forum discussions about infections, e.g., Win.Dropper.Mikey,
iTranslator, ContentProtector, SearchProtectToolbar, GSafe,
OtherSearch, and even an Indian security solution (Protegent
Total Security). Most of these applications likely use Proto-
colFilters’ default key, as we could verify for Protegent, and
hence make end users vulnerable to MITM attacks, in addition
to being a nuisance. More work is needed to understand the
extent of the use of this interception SDK.

XI. FUTURE WORK AND CONCLUSION

We recently found that the OtherSearch adware (also known
as FlowSurf/CleverAdds) shares very similar obfuscation, eva-
sion and steganography techniques with Wajam, sometimes in
a more or less advanced way. For instance, it installs a rootkit
to hide itself, but does not leak the browser histories. We
could not find an organizational connection between Wajam
and OtherSearch, thus suggesting that both may leverage
a common third-party obfuscation framework. We plan to
fingerprint Wajam/OtherSearch’s obfuscation framework and
leverage malware databases to discover other related samples.

Compared to previous studies on adware, we provide an
in-depth look into a wide-spread strain in particular, and
provide insights into the business and technical evolutions.
We uncovered advanced anti-analysis and antivirus evasion

techniques. We also identified important security risks and
privacy leakages. Considering the huge amount of private data
collected by its operators, and the number of installations it
made, it is surprising that nobody looked at it more closely.
Perhaps, “adware” applications may not seem much attractive.
However, we hope that the security community will recognize
the need for better scrutiny of such applications, and more gen-
erally PUPs, as they tend to survive and evolve into more ro-
bust variants that should be interesting to malware researchers.

REFERENCES

[1] “Lenovo PCs ship with man-in-the-middle adware that
breaks HTTPS connections,” news article (Feb. 19, 2015).
http://arstechnica.com/security/2015/02/lenovo-pcs-ship-with-man-
in-the-middle-adware-that-breaks-https-connections/.

[2] “PrivDog SSL compromise potentially worse than Superfish,” news arti-
cle (Apr. 24, 2015). http://www.computerweekly.com/news/2240241126/
PrivDog-SSL-compromise-potentially-worse-than-Superfish.

[3] 0xd4d, “de4dot,” https://github.com/0xd4d/de4dot.
[4] D. Alto, “7-zip 15.10 no longer decompiles NSIS script,” reply to forum

post (Dec. 7, 2015). https://sourceforge.net/p/sevenzip/discussion/45797/
thread/5d10a376/#6e1d/3fa3/6840/fe9c.

[5] D. Andriesse, C. Rossow, B. Stone-Gross, D. Plohmann, and H. Bos,
“Highly resilient peer-to-peer botnets are here: An analysis of gameover
Zeus,” in MALWARE’13, Fajardo, PR, USA, Oct. 2013.

[6] Anonymous, “Keeping history saved for longer than 3 months,”
2015, chrome issue 500239. https://bugs.chromium.org/p/chromium/
issues/detail?id=500239.

[7] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the Mirai botnet,”
in USENIX Security Symposium, Vancouver, BC, Canada, Aug. 2017.

[8] M.-L. Archambault, S. Giroux, and A.-P. Paquet, “Method and sys-
tem for aggregating searchable web content from a plurality of so-
cial networks and presenting search results,” July 2013, US Patent
2013/0179427 A1.

[9] BankInfoSecurity.com, “Zeus banking trojan spawn: Alive and kicking,”
2017, news article (Nov. 24, 2017). https://www.bankinfosecurity.com/
zeus-banking-trojan-spawn-alive-kicking-a-10471.

[10] D. Bestuzhev, “Steganography or encryption in bankers?” Kaspersky
Labs blog article (Nov. 10, 2011). https://securelist.com/steganography-
or-encryption-in-bankers-11/31650/.

[11] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. M. Youssef,
M. Debbabi, and L. Wang, “On the analysis of the Zeus botnet crimeware
toolkit,” in PST’10, Ottawa, ON, Canada, Dec. 2010.

[12] BleepingComputer.com, “Wajam and WNetEnhance Removal Guide,”
2015, tech article (Apr. 1, 2015). https://www.bleepingcomputer.com/
virus-removal/remove-wajam-ads-wnetenhance.

[13] H. Böck, “More TLS Man-in-the-Middle failures - Adguard,
Privdog again and ProtocolFilters.dll,” blog article (Aug. 13, 2015).
https://blog.hboeck.de/archives/874-More-TLS-Man-in-the-Middle-
failures-Adguard,-Privdog-again-and-ProtocolFilters.dll.html.

[14] C. Brook, “Mirai IoT botnet co-authors plead guilty,” 2017, news article
(Dec. 14, 2017). https://digitalguardian.com/blog/mirai-iot-botnet-co-
authors-plead-guilty.

[15] BullGuard, “Antivirus settings,” https://www.bullguard.com/support/
product-guides/internet-security/guides-for-current-version/main/
antivirus-settings.aspx.

http://arstechnica.com/security/2015/02/lenovo-pcs-ship-with-man-in-the-middle-adware-that-breaks-https-connections/
http://arstechnica.com/security/2015/02/lenovo-pcs-ship-with-man-in-the-middle-adware-that-breaks-https-connections/
http://www.computerweekly.com/news/2240241126/PrivDog-SSL-compromise-potentially-worse-than-Superfish
http://www.computerweekly.com/news/2240241126/PrivDog-SSL-compromise-potentially-worse-than-Superfish
https://github.com/0xd4d/de4dot
https://sourceforge.net/p/sevenzip/discussion/45797/thread/5d10a376/#6e1d/3fa3/6840/fe9c
https://sourceforge.net/p/sevenzip/discussion/45797/thread/5d10a376/#6e1d/3fa3/6840/fe9c
https://bugs.chromium.org/p/chromium/issues/detail?id=500239
https://bugs.chromium.org/p/chromium/issues/detail?id=500239
https://www.bankinfosecurity.com/zeus-banking-trojan-spawn-alive-kicking-a-10471
https://www.bankinfosecurity.com/zeus-banking-trojan-spawn-alive-kicking-a-10471
https://securelist.com/steganography-or-encryption-in-bankers-11/31650/
https://securelist.com/steganography-or-encryption-in-bankers-11/31650/
https://www.bleepingcomputer.com/virus-removal/remove-wajam-ads-wnetenhance
https://www.bleepingcomputer.com/virus-removal/remove-wajam-ads-wnetenhance
https://blog.hboeck.de/archives/874-More-TLS-Man-in-the-Middle-failures-Adguard,-Privdog-again-and-ProtocolFilters.dll.html
https://blog.hboeck.de/archives/874-More-TLS-Man-in-the-Middle-failures-Adguard,-Privdog-again-and-ProtocolFilters.dll.html
https://digitalguardian.com/blog/mirai-iot-botnet-co-authors-plead-guilty
https://digitalguardian.com/blog/mirai-iot-botnet-co-authors-plead-guilty
https://www.bullguard.com/support/product-guides/internet-security/guides-for-current-version/main/antivirus-settings.aspx
https://www.bullguard.com/support/product-guides/internet-security/guides-for-current-version/main/antivirus-settings.aspx
https://www.bullguard.com/support/product-guides/internet-security/guides-for-current-version/main/antivirus-settings.aspx


[16] S. Chimakurthi, “Malware hides in installer to avoid detection,” mcAfee
blug article (Aug. 25, 2016). https://blogs.mcafee.com/mcafee-labs/
malware-hides-in-installer-to-avoid-detection/.

[17] Z. Clark, “Komodia rootkit findings,” 2015, https://gist.github.com/
Wack0/f865ef369eb8c23ee028.

[18] CrowdStrike, “Hybrid Analysis,” https://www.hybrid-analysis.com/.
[19] X. de Carné de Carnavalet and M. Mannan, “Killed by proxy: Analyzing

client-end TLS interception software,” in NDSS’16, San Diego, CA,
USA, Feb. 2016.

[20] ESET, “What is a potentially unwanted application or potentially
unwanted content?” 2018, ESET Knowledge Base ID: KB2629. https:
//support.eset.com/kb2629/.

[21] B. N. Giri, P. P. Ramagopal, and V. Thomas, “Alerting the presence
of bundled software during an installation,” Nov. 2016, US Patent
2016/0328223 A1.

[22] Google, “SSL error assistant,” chromium source code. https:
//cs.chromium.org/chromium/src/chrome/browser/resources/ssl/
ssl error assistant/ssl error assistant.asciipb.

[23] G. M. Graff, “Inside the hunt for Russia’s most notorious hacker,” 2017,
news article (Mar. 21, 2017). https://www.wired.com/2017/03/russian-
hacker-spy-botnet/.

[24] HowToGeek.com, “Here’s what happens when you install the
top 10 Download.com apps,” 2017, tech. article (Apr. 3, 2017.
https://www.howtogeek.com/198622/heres-what-happens-when-you-
install-the-top-10-download.com-apps/).

[25] IOActive, “Reversal and analysis of zeus and spyeye bank-
ing trojans,” 2012, technical White Paper. https://ioactive.com/pdfs/
ZeusSpyEyeBankingTrojanAnalysis.pdf.

[26] S. Ishimaru, “Old malware tricks to bypass detection in the
age of big data,” Kaspersky Labs blog article (Apr. 13, 2017).
https://securelist.com/old-malware-tricks-to-bypass-detection-in-the-
age-of-big-data/78010/.

[27] J. Jones, “The state of web exploit kits,” in BlackHat’12, Las Vegas,
NV, USA, July 2012.

[28] Kaspersky, “Not-a-virus: What is it?” 2017, blog article (Aug. 21, 2017).
https://www.kaspersky.com/blog/not-a-virus/18015/.

[29] A. Kharraz, W. K. Robertson, D. Balzarotti, L. Bilge, and E. Kirda,
“Cutting the gordian knot: A look under the hood of ransomware
attacks,” in DIMVA’15, Milan, Italy, July 2015.

[30] M. Kiros, “FLIRT Signature File Database,” https://github.com/
michaelkiros/FLIRTDB.

[31] P. Kotzias, L. Bilge, and J. Caballero, “Measuring PUP prevalence and
PUP distribution through pay-per-install services,” in USENIX Security
Symposium, Austin, TX, USA, Aug. 2016.

[32] P. Kotzias, S. Matic, R. Rivera, and J. Caballero, “Certified PUP: abuse
in authenticode code signing,” in CCS’15, Denver, CO, USA, Oct. 2015.

[33] B. Krebs, “SpyEye Targets Opera, Google Chrome Users,” Apr. 2011,
blog article (Apr. 26 2011). https://krebsonsecurity.com/2011/04/spyeye-
targets-opera-google-chrome-users/.

[34] D. Kumar, M. Bailey, Z. Wang, M. Hyder, J. Dickinson, G. Beck,
D. Adrian, J. Mason, Z. Durumeric, and J. A. Halderman, “Tracking
certificate misissuance in the wild,” in IEEE S&P, San Francisco, CA,
US, May 2018.

[35] Linux man page, “clamd.conf(5).”
[36] G. D. Maio, A. Kapravelos, Y. Shoshitaishvili, C. Kruegel, and G. Vigna,

“Pexy: The other side of exploit kits,” in DIMVA’14, Egham, UK, July
2014.

[37] Malekal, “Liste Malware,” http://malwaredb.malekal.com/index.php?
malware=wajam.

[38] Mandiant, “APT1 – Exposing one of China’s cyber espionage units,”
2013, https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/
mandiant-apt1-report.pdf.

[39] T. Marques, “PNG embedded - malicious payload hidden in a PNG file,”
Kaspersky Labs blog article (Mar. 24, 2016). https://securelist.com/png-
embedded-malicious-payload-hidden-in-a-png-file/74297/.

[40] A. Nappa, M. Z. Rafique, and J. Caballero, “Driving in the cloud:
An analysis of drive-by download operations and abuse reporting,” in
DIMVA’2013, Berlin, Germany, July 2013.

[41] NSIS Wiki, “Can I decompile an existing installer?” http://nsis.
sourceforge.net/Can I decompile an existing installer.

[42] Office of the Privacy Commissioner of Canada, “Canadian adware
developer Wajam Internet Technologies Inc. breaches multiple
provisions of PIPEDA,” Tech. Rep. #2017-002, Aug. 2017,

https://www.priv.gc.ca/en/opc-actions-and-decisions/investigations/
investigations-into-businesses/2017/pipeda-2017-002/.

[43] PreEmptive Solutions, “Dotfuscator — .NET Obfuscator & much more,”
https://www.preemptive.com/products/dotfuscator/overview.

[44] Progress Software, “What is Telerik FiddlerCore?” https://www.telerik.
com/fiddler/fiddlercore.

[45] Quebec Government, “Registraire des entreprises,” http:
//www.registreentreprises.gouv.qc.ca.

[46] E. Rescorla and RTFM, Inc., “RFC 2818: HTTP Over TLS,” 2000, RFC
2818 (Informational Track).

[47] E. Roman, “Chrome no longer accepts certificates that fallback to
common name,” 2017, chromium issue 700595 (Mar. 11, 2017). https:
//bugs.chromium.org/p/chromium/issues/detail?id=700595&desc=2.

[48] M. Schiffman, “A brief history of malware obfuscation: Part 2 of 2,”
Cisco blog article (Fev. 22, 2010). https://blogs.cisco.com/security/a
brief history of malware obfuscation part 2 of 2.

[49] S. Shah and D. Cole, “Spyware/Adware – The quest for consumer
desktops & how it went wrong,” in BlackHat’05 Japan, Tokyo, Japan,
Oct. 2015.

[50] S. Shin and G. Gu, “Conficker and beyond: a large-scale empirical
study,” in ACSAC’10, Austin, TX, USA, Dec. 2010.

[51] V. Sidorov, “Network filtering toolkit,” http://netfiltersdk.com/.
[52] ——, “ProtocolFilters history,” http://netfiltersdk.com/protocolfilters

history.html.
[53] A. K. Sood and R. Bansal, “Prosecting the Citadel botnet - re-

vealing the dominance of the zeus descendent,” 2014, white pa-
per (Sep. 8 2014). https://www.virusbulletin.com/uploads/pdf/magazine/
2014/vb201409-Citadel.pdf.

[54] P. Soucy, “Wajam,” 2015, blog post (Aug. 21, 2015). http://dev-smart.
com/wajam/.

[55] SourceForge.net, “NSIS download statistics,” https://sourceforge.net/
projects/nsis/files/NSIS%203/stats/timeline.

[56] E. H. Spafford, “The Internet worm program: An analysis,” SIGCOMM
Comput. Commun. Rev., vol. 19, no. 1, pp. 17–57, Jan. 1989.

[57] T. Spring, “Where have all the exploit kits gone?” 2017, news article
(Mar. 15, 2017). https://threatpost.com/where-have-all-the-exploit-kits-
gone/124241/.

[58] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,
R. A. Kemmerer, C. Kruegel, and G. Vigna, “Your botnet is my botnet:
analysis of a botnet takeover,” in CCS’09, Chicago, IL, USA, Nov. 2009.

[59] Symantec, “W32.Stuxnet Dossier,” 2011, white paper (Feb.
2011). https://www.symantec.com/content/en/us/enterprise/media/
security response/whitepapers/w32 stuxnet dossier.pdf.

[60] A. Szekely, “NSIS (Nullsoft Scriptable Install System),” http://nsis.
sourceforge.net/Main Page.

[61] TheGuardian.com, “In millions of Windows, the perfect Storm is
gathering,” news article (Oct. 21, 2007). https://www.theguardian.com/
business/2007/oct/21/1.

[62] K. Thomas, J. A. E. Crespo, R. Rasti, J.-M. Picod, C. Phillips, M.-
A. Decoste, C. Sharp, F. Tirelo, A. Tofigh, M.-A. Courteau, L. Bal-
lard, R. Shield, N. Jagpal, M. A. Rajab, P. Mavrommatis, N. Provos,
E. Bursztein, and D. McCoy, “Investigating commercial pay-per-install
and the distribution of unwanted software,” in USENIX Security Sym-
posium, Austin, TX, USA, Aug. 2016.

[63] W. Wong and M. Stamp, “Hunting for metamorphic engines,” Journal
in Computer Virology, vol. 2, no. 3, pp. 211–229, 2006.

[64] WordPress, “A live look at activity across WordPress.com,” https://
wordpress.com/activity/.

[65] x64dbg, “An open-source x64/x32 debugger for windows,” https://
x64dbg.com/.

https://blogs.mcafee.com/mcafee-labs/malware-hides-in-installer-to-avoid-detection/
https://blogs.mcafee.com/mcafee-labs/malware-hides-in-installer-to-avoid-detection/
https://gist.github.com/Wack0/f865ef369eb8c23ee028
https://gist.github.com/Wack0/f865ef369eb8c23ee028
https://www.hybrid-analysis.com/
https://support.eset.com/kb2629/
https://support.eset.com/kb2629/
https://cs.chromium.org/chromium/src/chrome/browser/resources/ssl/ssl_error_assistant/ssl_error_assistant.asciipb
https://cs.chromium.org/chromium/src/chrome/browser/resources/ssl/ssl_error_assistant/ssl_error_assistant.asciipb
https://cs.chromium.org/chromium/src/chrome/browser/resources/ssl/ssl_error_assistant/ssl_error_assistant.asciipb
https://www.wired.com/2017/03/russian-hacker-spy-botnet/
https://www.wired.com/2017/03/russian-hacker-spy-botnet/
https://www.howtogeek.com/198622/heres-what-happens-when-you-install-the-top-10-download.com-apps/
https://www.howtogeek.com/198622/heres-what-happens-when-you-install-the-top-10-download.com-apps/
https://ioactive.com/pdfs/ZeusSpyEyeBankingTrojanAnalysis.pdf
https://ioactive.com/pdfs/ZeusSpyEyeBankingTrojanAnalysis.pdf
https://securelist.com/old-malware-tricks-to-bypass-detection-in-the-age-of-big-data/78010/
https://securelist.com/old-malware-tricks-to-bypass-detection-in-the-age-of-big-data/78010/
https://www.kaspersky.com/blog/not-a-virus/18015/
https://github.com/michaelkiros/FLIRTDB
https://github.com/michaelkiros/FLIRTDB
https://krebsonsecurity.com/2011/04/spyeye-targets-opera-google-chrome-users/
https://krebsonsecurity.com/2011/04/spyeye-targets-opera-google-chrome-users/
http://malwaredb.malekal.com/index.php?malware=wajam
http://malwaredb.malekal.com/index.php?malware=wajam
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://securelist.com/png-embedded-malicious-payload-hidden-in-a-png-file/74297/
https://securelist.com/png-embedded-malicious-payload-hidden-in-a-png-file/74297/
http://nsis.sourceforge.net/Can_I_decompile_an_existing_installer
http://nsis.sourceforge.net/Can_I_decompile_an_existing_installer
https://www.priv.gc.ca/en/opc-actions-and-decisions/investigations/investigations-into-businesses/2017/pipeda-2017-002/
https://www.priv.gc.ca/en/opc-actions-and-decisions/investigations/investigations-into-businesses/2017/pipeda-2017-002/
https://www.preemptive.com/products/dotfuscator/overview
https://www.telerik.com/fiddler/fiddlercore
https://www.telerik.com/fiddler/fiddlercore
http://www.registreentreprises.gouv.qc.ca
http://www.registreentreprises.gouv.qc.ca
https://bugs.chromium.org/p/chromium/issues/detail?id=700595&desc=2
https://bugs.chromium.org/p/chromium/issues/detail?id=700595&desc=2
https://blogs.cisco.com/security/a_brief_history_of_malware_obfuscation_part_2_of_2
https://blogs.cisco.com/security/a_brief_history_of_malware_obfuscation_part_2_of_2
http://netfiltersdk.com/
http://netfiltersdk.com/protocolfilters_history.html
http://netfiltersdk.com/protocolfilters_history.html
https://www.virusbulletin.com/uploads/pdf/magazine/2014/vb201409-Citadel.pdf
https://www.virusbulletin.com/uploads/pdf/magazine/2014/vb201409-Citadel.pdf
http://dev-smart.com/wajam/
http://dev-smart.com/wajam/
https://sourceforge.net/projects/nsis/files/NSIS%203/stats/timeline
https://sourceforge.net/projects/nsis/files/NSIS%203/stats/timeline
https://threatpost.com/where-have-all-the-exploit-kits-gone/124241/
https://threatpost.com/where-have-all-the-exploit-kits-gone/124241/
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://nsis.sourceforge.net/Main_Page
http://nsis.sourceforge.net/Main_Page
https://www.theguardian.com/business/2007/oct/21/1
https://www.theguardian.com/business/2007/oct/21/1
https://wordpress.com/activity/
https://wordpress.com/activity/
https://x64dbg.com/
https://x64dbg.com/


APPENDICES

TABLE X: List of 248 domains that appear to belong or have belonged to Wajam

adrienprovenchertechnology.com installationdappgratuite.com technologieboisseleau.com technologiequainton.com
armandlamoureuxtechnology.com installationrapideetgratuite.com technologieboissy.com technologierachel.com
autodownload.net installationrapidegratuite.com technologiebombarderie.com technologierambuteau.com
autotelechargement.net installsofttech.com technologiebouloi.com technologierivolet.com
barachoistechnology.com ios-vpn.com technologiebourassa.com technologierutherford.com
beaubourgtechnology.com jarbontechnology.com technologieboussac.com technologiesagard.com
bellechassetechnology.com jeanlesagetechnology.com technologiecalmont.com technologiesaintdenis.com
bernardtechnology.com jolicoeurtechnology.com technologiecarmenbienvenue.com technologiesaintdominique.com
berritechnology.com kingswoodtechnology.com technologiecartier.com technologiesaintjoseph.com
boisseleautechnology.com labroyetechnology.com technologiechabanel.com technologiesaintlaurent.com
boissytechnology.com laubeyrietechnology.com technologiechabot.com technologiesainturbain.com
bombarderietechnology.com launtontechnology.com technologiechamoille.com technologiesentier.com
bouloitechnology.com laurendeautechnology.com technologiechamplain.com technologiesherman.com
bourassatechnology.com lauriertechnology.com technologiecharlevoix.com technologiesirwilfridlaurier.com
boussactechnology.com main-social2search.netdna-ssl.com technologiechaumont.com technologiesnowdon.com
calmonttechnology.com mandartechnology.com technologiechavanac.com technologiesommery.com
carmenbienvenuetechnology.com manillertechnology.com technologiecherrier.com technologiestdenis.com
cartiertechnology.com mansactechnology.com technologiechesterton.com technologiestlaurent.com
chabaneltechnology.com media-c9hg3zwqygdshhtrps.stackpathdns.com technologieclairavaux.com technologieterusse.com
chabottechnology.com mercilletechnology.com technologiecoloniale.com technologiethorel.com
chamoilletechnology.com mertontechnology.com technologiecremazie.com technologietoleto.com
champlaintechnology.com mileendsoft.com technologiedrapeau.com technologietravassac.com
charlevoixtechnology.com monestiertechnology.com technologieemerson.com technologietreeland.com
chaumonttechnology.com monroetechnology.com technologieferronnerie.com technologietrudeau.com
chavanactechnology.com montorgueiltechnology.com technologieflagstick.com technologieturenne.com
cherriertechnology.com montroziertechnology.com technologiefullum.com technologievanhorne.com
chestertontechnology.com mounactechnology.com technologiefulmar.com technologievanoise.com
clairavauxtechnology.com nouaillactechnology.com technologiegarfield.com technologievassy.com
colonialetechnology.com pagerecherche.com technologiegarnier.com technologieviau.com
coolappinstaler.com papineautechnology.com technologieglencoe.com technologievimy.com
cremazietechnology.com payennetechnology.com technologiegoyer.com technologievouillon.com
datawestsoftware.com pelletiertechnology.com technologiegrendon.com technologiewendlebury.com
dateandtimesync.com piddingtontechnology.com technologiehenault.com technologiewilson.com
dkbsoftware.com pillactechnology.com technologiehutchison.com technologiewoodham.com
download-flv.com plateau-technologies.com technologiejarbon.com technologiewoodstream.com
download-install.com preverttechnology.com technologiejeanlesage.com technologiewotton.com
downloadmngr.com quaintontechnology.com technologiejolicoeur.com technologieyvonlheureux.com
downlowd.com racheltechnology.com technologiekingswood.com technologyflagstick.com
downlowd.org rambuteautechnology.com technologielabroye.com technologyrutherford.com
drapeautechnology.com rivolettechnology.com technologielangelier.com technologytreeland.com
emersontechnology.com sagardtechnology.com technologielaubeyrie.com technologywilson.com
fastappinstall.com saintdominiquetechnology.com technologielaunton.com technologywoodstream.com
fastfreeinstall.com saintjosephtechnology.com technologielaurendeau.com terussetechnology.com
fastnfreeinstall.com sainturbaintechnology.com technologielaurier.com thoreltechnology.com
ferronnerietechnology.com searchawesome.net technologiemandar.com toletotechnology.com
file-extract.com searchpage.com technologiemaniller.com travassactechnology.com
fileextractor.net sentiertechnology.com technologiemansac.com trudeautechnology.com
fileopens.com shermantechnology.com technologiemercille.com turennetechnology.com
flvplayer-hd.com sirwilfridlauriertechnology.com technologiemerton.com vanhornetechnology.com
freeappdownloader.com snowdontechnology.com technologiemonestier.com vanoisetechnology.com
freeusip.mobi socialwebsearch.co technologiemonroe.com vassytechnology.com
fullumtechnology.com sommerytechnology.com technologiemontorgueil.com viautechnology.com
fulmartechnology.com superdownloads.com technologiemontroyal.com videos-conversion.com
garfieldtechnology.com supertelechargements.com technologiemontrozier.com vouillontechnology.com
garniertechnology.com technologieadrienprovencher.com technologiemounac.com vpn-free.mobi
glencoetechnology.com technologiearmandlamoureux.com technologienouaillac.com wajam-download.com
grendontechnology.com technologiebarachois.com technologiepapineau.com wajam.com
henaulttechnology.com technologiebeaubourg.com technologiepayenne.com wendleburytechnology.com
hutchisontechnology.com technologiebellechasse.com technologiepelletier.com woodhamtechnology.com
insta-download.com technologiebeloeil.com technologiepiddington.com wottontechnology.com
install-apps.com technologiebernard.com technologiepillac.com youcansearch.net
installateurdappscool.com technologieberri.com technologieprevert.com yvonlheureuxtechnology.com



TABLE XI: Hashes of the 52 samples we collected
ID MD5 SHA1 SHA256
A1 225ccdcfe5625795647043679cb77112 3bd8f8845df04ac40b78da0fb9ecd7205514db62 96fafff2e4076a0a0fe2c9d151f37441507bf3c0dc4b761c66f65cbbc94c823c
A2 20e274902bd0249c68f756694d43e8eb d77aa518dbfb56782ca8efc030e09767a3c39fcd 9a3c8fdc8cd34be72d24b1d3f7f52078469c0f5e26ae373df18a871fd020fb08
A3 5d2b2eb701b38066318dcb254f2400a1 a2853d27c2378b9065deb3c69c5cf608f7c2ee1d 84aaf3531cde8a4ab67ca5d971039a12bc3010d59729f922e816eca5b12c28c1
A4 f314d12cbd75002f6249d2f50cdd2ce2 9876e0dfd6348285c99f2593e9cdaca7b91e3590 c5b2ad40c663f603e10ee53281bdf611704db441efbcec507dd46727bd245c6a
B1 c80db840ac2597b988e1c88b5d7015f2 343f9ab838ed64e862bbf8ff0ce723222ca97f90 ce755f50d228d92aca01a54b81bd534f188a93e74c73160e008e7cc81480bba0
B2 572b59e1225fc16a1478e7ff27919278 1de9bb908915f24730153ef5bbddd1e5467a034b 2673b0bb4d705a8cf29aeb86079485c51bab0aedaae8c960afe0c38efa7b151b
C1 2a791c466a3fe634b642ac636c31ae75 c291d5bae79149a2361daa69a39c29c23c564092 358633ea6e06f81de0af1c8ba2a774439c39073de012a0a50be28823a6d0f951
C2 68079e4133596ab3f4894353b572a476 5ee5373a55c4fdcaa4e1f2d62121da38aea6a8a5 12baaf1dc8d4abd03270d942e7498b7588480dc70305ee9a3e82870b6df4978f
C3 28709615566405e17290e59990850635 019da3fdb927bb47635df65f0d108b29d735eac4 023f680d7475da1fa0d0f2125c88db25d046720986a84e7075eef12734b37b95
B3 97e8f6b46de9e1e3e312de78ed90e17f 86e6c43ce0811930e7ea760546b1b1a933fee637 183d4b92d6b048bbdc871df240bb5de8d3343e50fc93dc363ef6fbfc892f107d
C4 49a6c8adb892e0423e27396ceb4171aa 6964f4c2ded64135728b160b19a1e6491bf8ae6e 4913597301b2f87401e12b33a5be3a8d07c07b0152c3769d327478e3ea89a416
C5 fec0f4a9a37069cd1bd8b32b9b05bd7d 56b6b6b8172ab418cfe1b3316f67bdbc71e25db8 68bcb81fd0bf65694c624224eb33e93c7ac6816469edb91ea61de2218734df39
C6 cb9a30d0aaef0335b4f8b4363bfb68a2 d4081867928b00a4d81d36b33c16185e16030684 b5e0dd43c424eb7e982b3c89e5b191864496464fb15482e3986d2198c0db5910
C7 1bc90276e8686b8ce545b22a1e8b19d3 9e64d510e3b624a1c13586053e9c59b6f66c30f4 45bc45bf74fa39e9f1c5a511a1858c984cec8c2c4b6a83521e918c08c68413cb
B4 45b1d58c23f15c841318abe1a786fbf8 779fdddbaa916eb54dea1ab9e51649f891a00d78 b62ac7510f58751d51a28077b81981c99aee512f4976e04c39f4e7f9efeacd09
B5 775367aad190fdb847f2628a47584c1b 251e2a0530b3eadc1543548ffd829bb38ce2f6b3 11b7ef63d462424ebd04b41258f75df3d936ecfac91cccbb1c930d63ead3573a
C8 c1d044237977df5bb779152a5c7bb941 6182744b23d1900ece5e3ffdfeb2aaeda3451722 78f1888d1d918b1924f02ead3fe00d9546aaf8b4db17892807fbbdd6df80ccbe
C9 ec0b9463a4564c63bab76985aff98f06 c46075248e528ed418b3a595a77bc40298464b08 936f27d444bac46c4012cb4fcf6093b34952e314cb68d780de1cdd510ecac697
C10 21624ae93359e523f6d69f52109e69bb f99e444107a822f22c0fdcd7b3ff0f57fc211507 ac3b6bab836a308dc68584364ef5cca3b747ce46e34de3fb1d235d45761e877f
B6 e4272e1164e458b400e39de26484d5c5 73538adff00910979b3cce6434891e182e36b942 6dd2651f5d62e4787354a0c04fac98d2d2a586439f623ad8b64e4ec6e7c97f82
C11 b67716e043f53e1f4af4cf318b4c5a03 a0d951243aa36511f7327c59d1ce2e098622d814 aeae711f64f921eb7b86864a1c09a00cc93cc1afed0f346150c0ada995cf93bd
C12 c276a93d4faa48ba9305ef43b4724200 7913ae29483a18dd22c451d28901f1fa9401a130 5b2e66ba34b66e12ea4668006bac9a6556b4073b4366747254ce3965627a60bd
C13 f4dc7103bdb0752b8d030b090fdfa475 8fc5553247ff7e47533ebdd73760d2a134fea257 f2f5b2608d1a0a68dd21e67055bc80dd5e214abefdb4c37ec866d12c503b44c4
C14 da4370da224a43456960bcff2c4b44ad d9d0fe82e40cc5528da1d4669325991a65a9c4a1 1013634048a79f181b191995276230a05532a3ea5fba8d638cd265f44c464bd4
D1 f7d2c05eccd522764167632b3a8dc122 0df370fdd35cee653b14418c858dba039a141479 c539963dd900a7771d33844cc48730d47cc510bdf1a7dea429e08c3bf060d393
C15 d31b23e32013385b1554c59cc02bf3d3 626b486c53abebc8fc412ea7af05f7d8bc0e92de c15ed12cc339b736ec73e6b710e8f7b646bc58914f888026558bd763f2feba1f
D2 8aefc1f5ad40155241aa87db4ff8eb6a 086d740ee131afc4c4408dcecbfab29712a9b8e0 7f17ac7ea17f54a1961fb3aabd3ca16a8180815641319d155a649c9c6e8a2128
C16 a1e84cf06ed6b583103120f36b53fcd1 0b6294dba9cfe4e2a79c6117b20d0475fb787d94 f51e192eb397c6df169713f5ec327d92bbfe9436ab169fed0e07f6865049f59f
D3 80e5c2fc7f0637df90f39204eebac932 f071e2f5a25a79d48c8cf8232d7a7775ecf016d6 89760cc89415efcf270090b2469afe0f6cb64bc3476936a1521b5055a4b71400
C17 f472a9dad90df05492a01135307bb2cf 58f14d93aa16f7fd1ee3930323ad39537eb974d5 ce590c460a34f946944228abb2e964505f75eedee8680998aa532ee93044b09a
D4 990ce267cff603a00e081a473b234f2a a1dd7e9d896214da1db85e98b83b1546d4f1c1e7 3c76908cf7dd9a8072724674ddcc64dd81f94e47a3bb38a669ecb26b5f95203a
C18 34fd34fad31242a57fda9284b4cde461 df6f20e89c06e8fd1e2cca3a06ef6da265e104c6 e42b339c4b12abd413ddef0051fb22bdd2ec0a0b6969a35e20c68c7e353d7f94
D5 0bc19d446ab54343afed0f8493cbadf9 e3930757733213461cbbc58e4fc45dc2b87529fa 9cdba6d9dc5cc505425217e0b4990ea60ef80de2c7f774f5dc760b3a4efe504b
D6 9936ddbcdc9828df9dc132508022231a 49f90582088d49f02ea2ae93f40fa12d4396c679 dc9fff7dff59a10a8717188655e7b8e39e05d522363c7d1522be215d2548bf67
D7 759ad7685285f7d6dbf4e29a0f44d6aa 855167f21cdd40af0917385975680f5b7948c6d6 0c2c5a9b31b6ecbae20ccdc89971db3ab9910f165605c5969440a24fe718ea65
D8 f3c774ee3a87b6c1b628b1f28e3e130a e91c12ec77fc2c11369014b9deb8055e7d51a320 b77f48c56903890e73c4348263beb22970978d6106188e6859599249c8dc70e7
D9 855ce542c7fc7da18f2696784ed7a181 0674e654524a7862247ebc75f3c786a17927d6a6 df00d50b957c684da709de2704252ff03c118f6dfe385c4e708a7d95187269b5
C19 9d64162edf85cd58e177aa7c444c297b 728cfab0d37503b1c1156929c2a8106a5b663328 248ecf25fdc624a3bb4eb27aa60d07a541c4e462e94b84ed86d006cd03450f60
D10 8961634b77b478bb85429b86780cfe28 90f536d7631548d980898d2473c5c46b93131022 e637d1c86ec77036d8ca43f69296543e51175e8294bc26ed4acfbec87beb8c76
D11 ad1425976256881e037bd9b26524f1c8 0b8a401e904b310c17315cb9bce49eebc5c69ede 0d0bfecb1d5e72773532398319e8eefc7bc778a88e2806ebb005864f04096aa8
D12 0d3a7053f911d368f80990062e82d20a 6677af3eed2b512d297d973f65d4c8db98c4df1d 97ef8100f215d2d2603d5cb780f37ef715a486e7847613427b7c0b481e9de194
D13 f5c0e283062bbd50799dca72b025d228 63f1af45a4975cf62d0173dd3f0ddaa7103bc471 45bc3bf77b741b508bb480a4fb7c49d4d04e0a5fd8f28c93f27f013a087789f1
D14 7460f80448708135e62afab652076e25 f37d15a89a6ea4d30be52668d50dc76f64a59e6e dfb6ba9cb3a53357e13de282ba2d3f001ed4f0b54ccb582d951afcc33f3fe303
D15 d7238809f6c14e663526fc0a32a14413 c902582e8971edc2f721cbf0b54cfb0c12d19c39 379e3863e863431ff9b51e8f0966416cc18d55c4e54f2fc1a7d885b9fb8dfac6
D16 8240e2fb284d278846c814008ab88546 bf0e5e0feb5db9fd940a6b75ee5cd2e841a67cbc aaf3a711ca3fdd538f51cb970f98d8b8a6414b5c9a1b3806c2a6c6ad43a8268c
D17 019df633f66910063a5ae8db6cb20ce9 e53b2d1742f46467ad45c9aac14d30c98574b57b 1b9975d97c9b4f622362e58acaf11b906a7a13d23f2ca058be0dfa8f464e3dbc
D18 fd9628d2187a886cb2c47348db012a5a b2d8f09d23ef79ac3e390ef493b70d4a7f632dd7 20528bac0f54eb5c6f2ba6cb75401697251fd8624dc36375205d949524f8f77e
D19 6751963e0862ac6bb94d66ff5f501977 074fad99fce9babe7925f144be4885e511eff5bc 8396d0099ce9c6c132ffc924f7cfa5fd29200a383ab46e2ed92d386104de63cd
D20 e4b85ab5cb039fc24d56946728b4213e 11152f9fe3090c54f3a5c223bcb01da02766605c e13363896eef7fae729b3766fcae20354bd9f787227b893ce3a4e7feab83836b
D21 f11b060a7092cedb7251509d4ecf0f14 b88e804aa94139d0aa628c9b141cc72e6128ce6e 787c4b5284c7d55d9510f519a2af6a5f085ff75b75fc273ab6134715a8d2633f
D22 ae3c32975f4ec3d1e2dd0dcd7f4636d4 0a63e46309dbfa2b13d47b488753b7c64b2896e2 c75009997a38afb450d73388cf42782ec4074c64f7acec3b2eb5dff89b265498
D23 aaf7ea90dfe3b22ad42b35727bf8bd20 e4f855747da8352969c8bf217657f7bb78332fe6 c4d96ff7de37715911b165711c034fc1159940fc2d110696bb481cd39d60a2f9


	Introduction
	Wajam's history
	Related work
	Sample collection and categorization
	Sample collection
	Categories

	Methodology and results summary
	Test environment and sample execution
	Dynamic and static analysis methodology
	Results summary

	Anti-analysis and evasion techniques
	Nested installers and steganography
	Obfuscation
	Digital signatures
	Encryption
	Installer
	DLL/side executables
	Main application

	Inflated size
	Unique file and folder names
	Antivirus scanning evasion
	Rootkit capabilities and persistence
	.NET and Powershell obfuscation
	Polymorphic icon
	Summary: Integration of the techniques

	Leaks
	Unique IDs
	Leaking personal and browser info
	Antivirus detection

	Updates
	Encryption
	Program update
	Traffic injection rules
	Browser injection rules
	Injected content

	Other security issues caused by Wajam
	Downgraded TLS security
	Private key generation
	Common Name generation
	Certificate validation

	Downgraded website security
	Hijacking updates with persistence

	Directions for better detection
	Future work and conclusion
	References

