
1. REQUEST MINIMAL PERMISSIONS

2. USE INCREMENTAL AUTHORIZATION 

4. VERIFY TOKENS RECEIVED FROM A
THIRD-PARTY IDP

5.USE SECURE BROWSERS 

RECOMMENDATIONS

FOR DEVELOPERS OF
SINGLE SIGN-ON 

Developers should request only the permissions
necessary for their application's functionality. This
principle of least privilege minimizes the risk of
exposing sensitive user data unnecessarily. Over-
requesting permissions can erode user trust and
may increase scrutiny during security
assessments.

Incremental authorization allows your app to
request permissions gradually as they are needed,
instead of all at once during the initial login. This
approach reduces the initial barrier for users to
start using your app while allowing you to maintain
security and privacy as additional features are
accessed.

3.REQUEST PERMISSIONS IN CONTEXT 

Providing clear and contextual explanations when
requesting permissions helps users understand why
your app needs specific access. This builds trust
and improves user consent rates.

Always validate the tokens you receive from an
identity provider (IdP) by checking their signature,
expiration, and intended audience. This ensures the
token is legitimate, unaltered, and issued for your
application, preventing misuse by malicious actors.
 

Ensure that the SSO flow operates only in secure
and up-to-date browsers to protect against
vulnerabilities such as man-in-the-middle (MITM)
attacks. 
Do not redirect the request through embedded
browsing environments, including webviews on
mobile platforms, such as WebView on Android or
WKWebView on iOS. 



7. USE PROOF KEY FOR CODE EXCHANGE
(PKCE)

8. HANDLE TOKENS SECURELY 
 

RECOMMENDATIONS

FOR DEVELOPERS OF
SINGLE SIGN-ON 

PKCE enhances OAuth 2.0 flows by mitigating CSRF
and interception attacks. It introduces an additional
verification step using a code challenge and code
verifier, ensuring that authorization codes cannot
be reused or intercepted by attackers.

Tokens, such as access and refresh tokens, are
critical to the SSO process and must be handled
with utmost care.
Always store them securely at rest and ensure they
are transmitted over HTTPS to prevent
interception. 
Never include your App Secret in client-side or
decompilable code, as this exposes sensitive
information to attackers.
Revoke tokens as soon as they are no longer
needed and delete them permanently from your
systems.

9. AVOID THE IMPLICIT OAUTH GRANT
TYPE 
 
The implicit grant type is less secure due to its
exposure of tokens directly in the browser. Instead,
use the authorization code grant type, which keeps
tokens off the front-end and leverages server-side
token handling for better security.

6. ENFORCE EXACT PATHS IN OAUTH
PROVIDERS CONFIGURATION 

Configure your OAuth providers to enforce exact
redirect URIs, preventing attackers from intercepting
tokens through similar or mismatched paths. This
ensures that tokens are only sent to the intended
destination


