
Final Report for OPC Contributions Program 2024-2025

“Privacy Concerns in Social Login Ecosystems”

Mohammad Mannan and Amr Youssef

Concordia Institute for Information Systems Engineering (CIISE)

Concordia University, Montreal

Abstract

Federated Single Sign-On (SSO) is a widely used authentication method that del-
egates user login to Identity Providers (IdPs) such as Google and Facebook. While
convenient, SSO raises privacy and security concerns, particularly, as we observed,
when permissions vary across different platforms (web vs. mobile, even different ver-
sions of an app). Existing work on SSO logins completely lacks the exploration of
such variances, and their privacy consequences, even though many users may use a
service both via web and mobile platforms. This study examines such discrepancies
at scale, alongside an analysis of dangerous permissions specifically requested on web-
sites and Android apps. We developed a framework to automate SSO logins on both
platforms, systematically measuring permission discrepancies. Our analysis, based on
661 and 318 successful logins using Google and Facebook SSO, respectively, across
both the Android app and its corresponding website for the same service, reveals a
12.58% discrepancy in Facebook SSO permissions and a 3.48% discrepancy in Google
SSO permissions between web and Android platforms. These findings, along with our
analysis of top-5K Tranco websites, indicate that Android apps tend to request more
intrusive permissions, underscoring the need for incremental authorization mechanisms
to minimize unnecessary data exposure.

1

1 Introduction

Federated Single Sign-On (SSO) has emerged as a widely adopted authentication strategy,
permitting websites to delegate the login process to established Identity Providers (IdPs)
such as Google, Facebook, and Apple. By employing SSO protocols such as OAuth and
OpenID Connect, websites allow users to access applications using their existing IdP ac-
counts. This approach effectively integrates the user’s account on the new platform with
their pre-existing online identity, thus removing the need for users to manage distinct cre-
dentials for each site, leading users to prefer social logins over website-specific registration
mechanisms. For example, a survey conducted by LoginRadius [44] indicates that 73.69% of
individuals aged 18-25 prefer using social logins over other login and registration methods.
On the flip side, through SSO, websites, referred to as Relying Parties (RPs), can access
more comprehensive user profiles by requesting additional data from users, such as their
birthday, location, and interests.

Privacy and security concerns of social logins have long been significant issues for users [15].
Consequently, considerable research has been focused on analyzing such issues in public SSO-
supported services, and SSO protocols [47], with several frameworks [37, 49, 38, 17, 23, 22]
developed to measure these issues. Specifically, Dimova et al. [14] assessed the privacy im-
plications of OAuth authentication by examining the SSO permissions requested by various
IdPs, finding that 18.53% of websites using OAuth request at least one non-minimal per-
mission (largely unnecessary, not requested by other IdPs). Moreover, Morkonda et al. [34]
discovered that popular RPs request varying amounts of user data from different IdPs, with
some being significantly more privacy-intrusive, a phenomenon comparable to dark patterns
in website design. In subsequent work, they introduced SPEye [35], a browser extension pro-
totype that extracts and displays permission request information from SSO login options
in RPs, focusing on three major IdPs. Several past user studies (e.g., [8, 9]) also revealed
that users frequently grant permissions without fully understanding the scope of data being
shared with the RPs.

A significant gap in previous research is the lack of privacy analysis on SSO permissions
for mobile apps, and more critically, the discrepancies (if any) in permissions between web
and mobile platforms. This is important as many users rely on mobile apps for accessing
online services, and users also switch between mobile and web services at least for specific
applications (e.g., checking notifications on the app and more involved usage on the website).
Users may assume that logging into a mobile app with a specific IdP results in consistent
data access as logging into the corresponding website; however, existing work in SSO privacy
does not shed light into such specific issue. As SSO implementations on mobile apps also
differ from those on websites [12, 26] (although transparent to users), privacy issues need a
closer look on both platforms.

To address this gap, we develop SSO-Scoper, a framework designed to automate Google
and Facebook social logins on websites and Android mobile apps. We choose Android due
to its popularity compared to other mobile platforms (e.g., iOS), and Google and Facebook
IdPs, as they are most commonly supported by websites (see e.g., [14, 7, 23]. We use
SSO-Scoper to automatically identify, login, and collect requested permissions by RPs for a
given set of website domains (top sites from the Tranco [39] list) and downloaded apps (top
apps from Google Play). After collecting the list of permissions for top apps and websites,
we perform various privacy analyses, including: generate statistics about the permissions,
especially the more sensitive ones (beyond the minimum scopes allowed by the IdPs); and
systematically compare the permissions requested on web and Android platforms for the

2

same services, and identify the discrepancies (if any) between web vs. app.
Our seemingly straightforward approach encountered several challenges, including: the

complexities of UI automation (e.g., finding the correct login buttons) in websites (see the
example in appendix A.4), and specifically in Android apps, due to the numerous ways that
developers implement UI in websites and apps; the lack of an obvious mapping between an
app and its corresponding website (if exists); Captcha challenges and other UI banners on
some sites; and the variations in SSO login implementations across IdPs. We adequately
addressed these challenges to enable our large-scale analysis. For instance, while our tool
relies on text-based searches to locate SSO-related buttons, it currently cannot identify IdP
logos/images on websites or apps. To mitigate Google reCAPTCHA triggers during domain
login searches, we used proxy servers to rotate SSO-Scoper ’s IP addresses. For preventative
UI banners on websites (e.g., cookie consent pop-ups and ads), we installed two browser
extensions to handle these interruptions.

Our main contributions and notable findings include:

1. We design and implement SSO-Scoper, the first such SSO permission measurement
tool for automating SSO login on websites and Android apps, using Facebook and
Google IdPs. We will open-source our tool to further future research in this area.
We use SSO-Scoper to log into 1716 and 678 apps using Google and Facebook SSO,
respectively (chosen from a dataset of 25K popular apps). For corresponding websites,
we successfully logged into 661 and 318 using Google and Facebook SSO, respectively.
To supplement this, we also logged into 733 and 265 websites from top 5K Tranco
sites using Google and Facebook SSO, respectively. In total, we successfully logged
into 1286 and 523 websites with Google and Facebook SSO, respectively (from a total
of 6322 websites). After successful logins, we collect all the requested permissions and
perform our analysis.

2. We observed that Android apps in general request more permissions than websites.
For Google, 1,828 permissions were requested by 1,716 apps (1.06 permissions/app)
vs. 740 permissions on 733 websites (1.01 permissions/website). For Facebook, 1,525
permissions were requested by 678 apps (2.25 permissions/app) vs. 554 permissions
on 265 websites (2.09 permissions/website). Similarly, the number of permissions
requested from Facebook is generally higher than those requested from Google.1 Such
trend underlines the importance of evaluating SSO permissions for apps.

3. We identified the use of 34 non-minimal Google SSO permissions (all permissions
except profile info) on 6,322 websites and 138 permissions on 1,716 apps. For Facebook,
there were 118 non-minimal permissions (beyond name, profile picture, and email
address) on 6,322 websites, and 226 permissions on 678 apps. These permissions are
more privacy-intrusive, and in many cases, not essential for users (as observed in our
manual analysis, see Sec. 6).

4. Surprisingly, for the same service offered via a website and Android app, the app
generally requests more intrusive permissions than the website (the opposite is also

1We conducted a statistical analysis with a 95% confidence level. For the comparison between the average
number of permissions requested from Google (apps vs. websites), a p-value of 0.0048 was calculated. For
the average number of permissions requested from Facebook (apps vs. websites), the p-value was 0.0357.
Both p-values indicate statistically significant results. Additionally, when comparing the average number
of permissions requested from Facebook and Google using the same platform, the p-values were less than
0.0001, further confirming significant differences in both cases.

3

true in a few cases). Considering all the apps and websites offering the same service, for
Facebook, we identified these permission discrepancies in 12.58% of the RPs (40/318),
and for Google, 3.48% (23/661) of the RPs. When a service requests different sets
of permissions on its web and mobile versions, users who access both platforms may
unintentionally grant the more intrusive permissions, even if a single login on the more
demanding platform (web or mobile) is performed. Such potential oversharing has not
been reported on past work due to their focus on websites alone.

5. As noted in the official Google and Facebook documentations and previous studies [14],
users typically have the option to deny any requested permission during login, except
for the default permissions. However, our analysis revealed that injecting additional
permissions (permissions that have not been reviewed previously by the IdP) from the
client side introduces a significant attack vector that malicious RP developers could
exploit to bypass the IdP’s app review process. Specifically, our attack on Facebook’s
SSO permissions was successful, prompting Facebook to address the vulnerability and
reward us with a bounty. For Google, the results were more nuanced. While mitigation
mechanisms were already in place and the behavior aligns with the intended design,
the attack surface remains partially exploitable, as discussed in Sec. 7.

Ethics and Disclosure. Our experiments primarily involved logging into websites and
Android apps. We used test accounts with email addresses containing the keyword “test”
to clearly indicate their purpose as non-personal, experimental accounts. Throughout our
automatic and manual analyses, we strictly avoided actions that could interfere with the
normal operation of the websites or mobile apps. No malicious or heavy data requests
were sent, and we limited our interactions to essential login and permission analysis tasks,
minimizing any potential impact on the services being tested. For the 14 case study apps
mentioned in Sec. 6, we contacted each app’s developer, using the contact information
available on their Google Play Store page, to report our findings, and inquire about the
observed discrepancies. We received responses only from Smule, Badoo, and Cupid Media.
Smule’s response indicated that the mandatory permissions remain the same across both
platforms, while the optional permissions differ. Badoo team stated that both the app
and web versions only require members to share their Facebook name and profile picture—
although they ask for additional non-minimal permissions. Cupid Media explained that
the Android app requests additional information, like gender and birthday, to streamline
the user experience by auto-populating profiles, while the web platform only requires basic
authentication. Additionally, to responsibly address the risks associated with permission
adjustments in Sec. 7, we disclosed our findings to both Facebook and Google. Facebook
acknowledged the vulnerability, awarded us a bounty, and has since implemented a patch
at the time of writing this paper.

2 Background

OAuth [21] is an open standard for access delegation that enables websites or apps to obtain
limited access to user information without exposing user credentials. This standard was
developed to provide a method for third-party applications to request access to protected
resources hosted by service providers like Google, Facebook, and Apple. The access is
granted by users through a consent-based mechanism, where they authorize the third-party
service to access their data without sharing their login credentials. Over time, OAuth has

4

become a fundamental protocol for modern web and mobile apps, enabling secure third-party
access to user resources hosted at popular services like Facebook/Google.

Table 1: Summary comparison for logins and platform coverage in related measurement
studies

Ref Year Focus IdPs Platform Target Size # FB Logins # Google Logins

[49] 2014 security web 17,913 1,660 -
[43] 2019 security +2 mobile 550 128 -
[32] 2021 privacy +2 web 2,500 676 688
[16] 2022 security web 100K 1,900 -
[7] 2023 SSO prevalence +7 web 10K 293 339
[14] 2023 privacy +33 web 100K 4,743 3,400
[23] 2024 security +10 web 1M 18,560 21,473

Our work
2025 privacy mobile 21,163 678 1,716

web 6,322 523 1,286

During SSO login, users are typically prompted to grant specific permissions to the
requesting application, such as access to their profile information, email address, and other
personal data. These SSO permissions are often presented in a dialog box, where users can
review and modify the scope of access before proceeding. The granularity of permissions
allows users to control which aspects of their data are shared. If a user wishes to revoke
or edit these permissions after the initial login, they can do so through the IdP website,
which provides a centralized interface to manage the granted permissions, including revoking
access entirely or adjusting the permissions to limit the data shared with the application.

In the context of implementing SSO using OAuth 2.0, developers are required to register
their applications with an IdP such as Google or Facebook. This registration process results
in the issuance of a unique application identifier, known as an app ID, which is used to
identify the application during the OAuth authorization flow. Typically, developers provide
information such as the application’s name, website domain, and redirect URL during reg-
istration. Often, the application’s requirements remain consistent across web and mobile
platforms, necessitating the same set of SSO permissions for both web and mobile users.
In such cases, developers usually opt for a single app ID with uniform permissions across
platforms.

However, when different SSO permissions are required for web and mobile platforms,
developers have two possible strategies. The first strategy is to use a single app ID for both
platforms, adjusting the permissions in the client-side code to meet the specific needs of
each platform. Alternatively, developers may register two separate app IDs–one for the web
and one for the mobile platform–allowing for platform-specific control over settings, SSO
permissions, and security configurations, thus addressing the distinct requirements of each
platform more effectively. Regardless of the chosen strategy, IdPs recommend developers to
adopt incremental authorization when requesting SSO permissions [19, 28]. This method
enhances user trust and privacy by requesting permissions only when they are required
for a specific functionality, rather than requesting all permissions upfront; however, such
incremental permission request is yet to be adopted by RPs (c.f. [14]).

5

3 Related Work

The research on SSO systems, especially regarding automated login and social login usage,
has been extensive due to rising concerns about security and privacy issues [42, 18, 37, 38,
22, 25, 5, 10, 48, 41]. Most work primarily however examined SSO implementations on
websites, not mobile apps. Below we discuss example studies more relevant to our work.

One of the first tools developed in this domain was SSOScan [49], which aimed to uncover
SSO-related vulnerabilities (e.g., access token misuse, user credential leakage) in websites
that used Facebook as the IdP. Out of the 1660 sites with Facebook SSO (taken from top
20k websites), over 20% were found to be vulnerable. More recently, in the similar vein,
Ghasemisharif et al. [16] introduced SAAT, a tool designed to assess account and session
management practices on websites using Facebook SSO, and reveal security issues such
as the lack of implementing re-authentication by most RPs to prevent compromise from
hijacked IdP cookies. Jannett et al. [23] proposed SSO-MONITOR, a framework aimed
at continuously monitoring/archiving the security and implementation of SSO systems on
websites. From 89k SSO authentication flows on the top 1M websites, the authors found
33k violations of OAuth security best practices and 339 severe security vulnerabilities (e.g.,
30 username and password leaks).

In terms of SSO security analysis, Shi et al. [43] assessed SSO implementation in An-
droid apps with support for Facebook, WeChat, and Sina Weibo IdPs. Their study primarily
identified vulnerabilities stemming from incorrect SSO implementations by testing and ana-
lyzing network traffic. Out of 23,936 apps, they successfully examined 550 apps, and found
that 397 of them had flawed SSO implementations.

On the privacy analysis of SSO permissions, Dimova et al. [14] examined unnecessary
data collection practices in 6211 SSO-supported websites (chosen from the CrUX top 100K
websites, over 30 different IdP services). Their findings revealed that when websites request
a non-minimal scope of user data, much of the information collected is often excessive (as
apparent from the support of alternative SSO options like Apple that allow access to very
little user data).

To understand variations in the permissions requested by websites for different IdPs
(Google, Facebook, Apple, and LinkedIn), Morkonda et al. [32] developed OAuthScope, a
tool for semi-automated scanning and analysis of OAuth 2.0 parameters and permissions.
By checking the SSO login options on popular websites (Alexa top 500 from five countries),
they revealed that websites request different categories and amounts of personal data from
different IdP providers. Their work is focused on identifying privacy concerns, including
dark patterns in the placement and ordering of SSO login buttons, often nudging users
toward selecting IdPs that requested more permissions than others.

Apart from security or privacy issues, Ardi and Calder [7] examined the prevalence of
SSO logins on top 10K CrUX websites using nine different IdPs, including Google and
Facebook. They found that 51% of these websites offer a login option, and about 30% of
the top 10K sites allow login via 3rd-party IdPs.

In terms of user studies focusing SSO login usage, recent work by Balash et al. [8] found
that 89% of their 432 survey participants have used Google SSO at least once to log into
3rd-party apps/services. In their second survey with 214 participants, they used a browser
extension to collect information about apps that have access to users’ Google accounts,
and surveyed users about their awareness and understanding of such access. Their findings
include: most participants were not concerned about third-party apps’ access to their Google
account, although a significant number of participants could not fully understand what

6

an app can do with a specific permission (e.g., “view personal info”). Majority of the
participants also reported not to review what services have access to their Google account.

In a 2013 study by Bauer et al. [9], reported that participants’ understanding of the infor-
mation IdPs shared with RPs was not influenced by the content of consent dialogs displayed
by the IdPs, or how much information was being shared with RPs. Participants were also
generally unaware of RPs’ access rights (e.g., durations, frequencies) to user data. Recently,
Morkonda et al. [33]conducted a 200-participant study and found that 55% of participants
preferred an SSO login option as their initial login choice, and 28% of participants decided
to change their login choice after viewing the comparative IdP permissions.

Research Gaps. As apparent from the above discussion, there is significant research in
SSO security, privacy, and usability—mostly around the use of SSO logins for websites.
Surprisingly, no privacy measurement study has been done on mobile SSO privacy issues.
Consequently, our study explores privacy-sensitive permissions requested by Android apps,
as well as, covers the use of non-minimal permissions in both websites and apps, and reveals
the discrepancies between permission requests for the same services offered via websites and
apps.

Table 1 provides a summary of relevant studies closely related to our research. For each
study, the table indicates the successfully analyzed IdPs, the successfully tested dataset size,
and the final number of successful logins. Our work contributes to this domain by offering
a side-by-side analysis of websites and Android apps using the two most common IdPs,
Facebook and Google.

4 Methodology

This section outlines the methodology we adopted for automating logins on apps and web-
sites, as well as for analyzing the requested permissions on each platform. We detail the
detection and login techniques utilized by SSO-Scoper along with its approach to permission
analysis; see Fig. 1 for an overview. The framework comprises two primary components for
automating social logins on apps and websites, along with a third component dedicated to
extracting and analyzing requested permissions.

Both Facebook and Google SSO login processes allow users to edit the permissions
shown during login, enabling them to proceed with the minimal default permissions, which
typically include only the public information of the SSO account and the user’s email address.
However, in our experiment, we assumed that users do not alter the presented permissions
in the login pop-up and proceed with them (c.f. [8, 9]).

4.1 SSO Logins on Android Apps

The SSO-Scoper component for Android app automation is designed to analyze screen
elements, specifically targeting login buttons to identify available SSO options, and then
execute the login process using our SSO test accounts. The orchestration and management
module processes a list of predefined IdPs, specifically Facebook and Google, and conducts
separate analyses for each IdP. We utilize text-based keyword searches to locate relevant
buttons within the authentication process. We first identify login or registration buttons on
the screen and then interact with these buttons to find Google/Facebook SSO options. If an
SSO button is detected, the tool initiates the login procedure. The authentication process
is divided into three distinct phases: login search, SSO search, and SSO login. Depending

7

Figure 1: SSO-Scoper overview

on the execution of each phase, a specific set of keywords is searched within the screen
elements. In the login search method, a set of hardcoded strings (e.g., register, login; for the
full list, see Table 6 in the appendix), derived from a manual inspection of 50 random apps,
is used to identify login or signup buttons. If these buttons are found, we then search for
the IdP names (Facebook, Google) within the text of the screen elements. We also perform
this search on the app’s start page, as the manual analysis of 50 apps revealed that some
apps present SSO login options directly on their start page. During the SSO search phase,
if any screen element’s text attribute contains the IdP name, the corresponding button is
clicked, and the SSO login process begins, searching for our test IdP account name or email
on the screen. To ensure a successful login into an application, the IdP accounts are logged
into on the device. For Facebook, the Facebook app is installed and logged in, allowing it
to open and request permissions when logging in to other apps using Facebook SSO. For
Google, a Google account is signed in on the device, so that when logging in with Google
SSO, a dialog box displaying the Google email appears. In both cases, the tool identifies
the account name or email, and selects it to complete the login process.

After a successful login, the app data is erased from the device, and it is re-launched in a
fresh state for the analysis of the next IdP. When both IdPs are tested, the tool uninstalls the
installed app and removes its associated data from the device. The process then continues
with the installation and analysis of the next app. After the tool has finished running, a list
of successfully logged-in apps, along with the permissions granted to them, is automatically
extracted from the IdP accounts and saved. This information is subsequently used for our
analysis.

We developed this module on top of the ThirdEye framework [40] to leverage its capabili-
ties in app execution, orchestration, and UI interaction. In addition to making modifications

8

to the existing code-base to suit our requirements, we added approximately 600 lines of code
to the UI interactor module to implement the SSO search and login processes.

4.2 Mapping of Android Apps and Websites

For our comparison between apps and websites SSO permissions for the same services, it
is essential to map Android apps to their corresponding websites. Each app’s Google Play
Store listing includes two URL fields: the website URL, which refers to the official domain,
and the privacy policy URL. Since some apps do not have the website field populated by
the developer, we also collect the privacy policy URLs (assuming that may lead to the
corresponding service’s website). By leveraging the Python library “tldextract” [24], we
extract the domain from the privacy policy URL and use it as the corresponding website for
the mobile app. This process of retrieving website and privacy policy URLs is automated
via the Google Play API [36]. The final output consists of websites associated with Android
apps, with the privacy policy domain used for apps without a website URL.

We manually compared the website and privacy policy domains of 100 randomly selected
apps. In 79 cases, both the website and privacy policy fields matched. For 12 cases, however,
the website domain differed from the privacy policy URL domain: the website field referred
to the app’s official site, while the privacy policy field either pointed to a static landing
page—common for entertainment apps—an unrelated website used solely for hosting legal
documents, or a shortened URL such as bit.ly. For 9 apps, the website field was left blank
on the app’s Google Play Store page, with the privacy policy field containing the app’s
website.

4.3 SSO Logins on Websites

To automate social logins on websites, we utilized the Python library “unde-
tected chromedriver” [46], an optimized Selenium WebDriver designed to bypass detection
by potential antibot systems. This approach, previously adopted by Pham et al. [37], was
complemented by using the latest version of the Chrome browser for user interface automa-
tion.

SSO-Scoper begins by processing a list of website domains (collected from apps as de-
scribed in Sec. 4.2, augmented with Tranco top-5K sites). For each domain, a Google
search is performed using the “login” keyword to locate the login page. The first result that
matches the input domain is selected, and the tool attempts to locate the SSO login button
on this page. If the button is not found, the tool sequentially examines the second search
result and the root domain webpage. However, it does not consider any other links from the
search results, as our manual analysis of 100 websites indicated that the login page typically
appears within the first two search results.

Once a webpage is selected and opened, SSO-Scoper initiates a heuristic, text-based
search, scanning for SSO-related regex-based keywords (see Table 7 in the appendix), within
all attributes of page elements. The search prioritizes buttons first, followed by all other
elements, while disregarding those with zero height or width to limit the search space and
optimize performance. The list of keywords, priorities, and filters was developed from a
manual analysis of 100 websites. If the tool locates these clickable keywords, it proceeds
to the login phase, where it searches for the SSO account name or email address on the
screen. If no SSO-related elements are found, a third phase (login search) begins, targeting
keywords related to login or registration (see Table 8 in the appendix). Once a login button

9

bit.ly

is identified, SSO-Scoper resumes its search for SSO login buttons and proceeds with the
login process if the related buttons are detected.

After each click on SSO buttons, SSO-Scoper calls a method to analyze the current page,
and determines if SSO login can be performed. The main functionality of this method is to
check if the IdP URLs used for SSO login initiation are contained in the actual URL login
page that has been opened in the browser. For Facebook SSO, this pattern includes the pres-
ence of “facebook.com/login” or “facebook.com/privacy/consent” in the URL. For Google,
it includes “/v3/signin/identifier?”, “/o/oauth”, “/gsi/select?”, or “/oauth/google”. The
presence of these strings within the URL guides the tool to proceed with the login method.

One key aspect of our approach is the use of a fixed, pre-configured Chrome profile to
facilitate the login process and address issues such as non-English websites and preventative
pop-ups. In this profile, both Facebook and Google accounts are logged in, along with the
installation of two Chrome extensions to further simplify the interaction with websites. The
first extension, “Accept All Cookies” [1], is a Google Chrome extension that automatically
accepts cookie consent on various forms of notifications or pop-ups, minimizing user inter-
action with the website. The second extension, “AdGuard Adblocker” [2], is employed to
block advertisement pop-ups on web pages.

To address the issue of non-English languages on some websites, the Chrome profile is
configured to automatically translate all content into English. This ensures that, immedi-
ately after a page loads, it is translated, allowing the tool to accurately identify login and
SSO-related buttons. Based on a manual analysis of 20 non-English websites, we observed
that the translation process typically completes in under 2 seconds. As a result, SSO-Scoper
is programmed to pause for 3 seconds before processing the webpage. Additionally, the tool
detects and avoids social media pages and links that might be mistakenly identified as SSO
login links during analysis.

A primary challenge we encountered during this stage was frequently triggering Google’s
reCAPTCHA when searching for website login pages. To enhance the human-like behavior
of our automation and reduce Captcha triggers, we implemented pauses between actions
and used Selenium’s Python module, “Action Chains” [4], to simulate mouse movements.
Additionally, we set up four dedicated proxy servers for our experiment and configured
Selenium WebDriver to rotate the proxy IP after analyzing every 20 domains.

Finally, a list of successfully logged-in websites’ SSO names and their granted SSO
permissions is automatically extracted from the IdP accounts and saved. This information is
subsequently used to compare the SSO permissions requested on the corresponding websites.

4.4 Collection and Analysis of SSO Permissions

Facebook imposes a rate limit on viewing app permissions, locking the account temporarily
if a certain threshold is reached. To avoid such issues, we extract all app permissions from
our test Facebook and Google accounts after completing the login process for all apps and
websites (i.e., not after each app/site testing). Each app appears in the Facebook and
Google dashboards under its configured app SSO name (configured SSO name by the app’s
developer).

To map SSO names across the web and Android platforms and compare SSO permis-
sions for each app and its corresponding website, we employed two approaches; app ID
comparison, and fuzzy string matching using Levenshtein distance.

For Facebook, each app is assigned a unique app ID—a numeric string included in the
query string of the URL displaying permissions. Because this app ID is unique and consistent

10

for each service, we used it to compare app SSO permissions across two different profiles,
one associated with the web experiment and the other with the mobile experiment.

For Google, since the app IDs are not accessible through the Google dashboard, we
employed the “fuzzywuzzy” [13] Python library, which uses Levenshtein distance to measure
the differences between sequences of app SSO names. To ensure the accuracy of the final
mapping, we manually verified the mapped SSO names across both platforms.

5 Results

In this section, we present our findings on the prevalence of SSO logins in Android apps and
websites, followed by an analysis of SSO permissions and their discrepancies across the two
platforms. Note that our experiments were conducted from December 2023 to September
2024. For testing apps, we utilized Pixel 4 and Pixel 6 Android devices running rooted
Android 12 images, alongside a desktop running Ubuntu 22.04 to orchestrate the execution
of the target apps.

5.1 Prevalence of SSO Logins on Android Apps

We began by collecting a dataset of 25K popular Android package names from various
sources, including Androidrank [3], AndroZoo [27], and the Google Play Store. During anal-
ysis, 3,837 apps failed to install on our devices due to various reasons such as incompatible
versions or geographic region restrictions. Of the remaining apps, SSO-Scoper successfully
logged into 678 apps (3.20%) using Facebook as the IdP and 1716 apps (8.11%) using the
Google IdP; see Table 2.

The remaining apps either did not support login via Facebook or Google SSO, or their
login processes were too complex for us to navigate. This complexity often stemmed from
lengthy login flows with non-standard keywords for login-related buttons, or the presence of
advertisements during app startup or before the login process. We manually installed and
evaluated 50 apps to assess the efficiency of SSO-Scoper. Out of these apps, 8 supported
login with Facebook SSO, and 11 supported Google SSO. SSO-Scoper successfully logged
into 5 apps using Facebook SSO and 7 using Google SSO. For the remaining apps, SSO-
Scoper failed to log in due to the challenges mentioned.

Table 2: Summary of app installation and login success

Total Android apps 25,000

Successfully installed and analyzed 21,163/25,000 (84.65%)

Successful login with Facebook 678/21,163 (3.20%)

Successful login with Google 1,716/21,163 (8.11%)

In terms of permissions distribution, as expected, most apps (except a few games) request
the default minimal permissions. For Facebook SSO, 99.71% of the apps requested “Name
and profile picture” and 91.89% requested “Email address”, and for Google SSO, 98.86% of
the apps requested “See your profile info”. Other commonly requested permissions include:
“Birthday”, “Gender”, and “Photos” (for Facebook); and “Create, edit, and delete your

11

Google Play Games activity”, “See and download your exact date of birth”, and “See, create,
and delete its own configuration data in your Google Drive” for Google. See Figures 6 and 7.

To compare Facebook vs. Google SSO permissions requested by the same apps, we iden-
tified 424 apps with successful SSO logins using both IdPs. In 55 apps (12.97%), Facebook
permissions were more privacy-intrusive than Google permissions; and in 8 apps (1.89%),
Google permissions were more privacy-intrusive than Facebook. In one app (“Fotka”), both
Facebook and Google requested different non-minimal permissions (Facebook SSO requested
for “Name and profile picture”, “Gender”, “Email address”, “Birthday”, “Current city”, and
“Hometown”, while Google SSO requested “See your profile info” and “View Google Photo
Library”). Note that for Google SSO results, in some cases, we used the exact permission
names as appear in a user’s Google account dashboard.

5.2 Prevalence of SSO Logins on Websites

We perform our tests on two sets of websites: domains that are collected from our Android
apps (to compare between apps with websites), and Tranco top-5K websites (for general
websites).

We extracted 1724 unique websites corresponding to the tested apps with successful IdP
logins. In total, SSO-Scoper successfully logged into 318 websites using Facebook SSO and
661 websites using Google SSO, which corresponds to 46.90% and 38.52% successful login
rates for Facebook and Google, respectively. To validate our results, we manually checked
100 randomly-selected URLs for Facebook SSO and 100 URLs for Google SSO. Surprisingly,
for Facebook, only 58 of these URLs offered Facebook SSO as a login method, while 22 were
static websites with no login capability, often serving as simple landing pages for mobile
apps, especially common in the entertainment and gaming categories. Therefore, the true
success rate of our tool is estimated at 75.86% (44/58) for Facebook SSO. In contrast, for
Google SSO, 30 websites were static pages with no login option. Of the remaining URLs,
56 websites supported Google SSO, and SSO-Scoper successfully logged into 48 of them,
achieving a success rate of 85.71%.

From the Tranco top 5K websites, 1,170 domains (23.4%) did not have login pages
(as from our search results). Among the remaining websites, it successfully logged into 733
using Google SSO and 265 websites using Facebook. To assess the success rate, we randomly
selected 100 websites from the top 3K Tranco domains where SSO-Scoper did not complete
the login process. Of these 100 domains, the tool failed on 10 sites: 4 required Captcha or
a confirmation button before login, and 6 used extensive customization with non-standard
button names.

Overall, we assessed a total of 6,322 websites, including the top 5K Tranco sites and
the websites corresponding to the Android apps. See Figures 4 and 5 for the distribution
of permissions. Top 3 common permissions for Facebook are “Birthday”, “Gender”, and
“Current City”; note that the “Current City” permission takes precedence over the “Photos”
permission, which ranks higher for Android apps. For Google, the top three most common
website permissions differ significantly from those on Android: “See and download your
exact date of birth”, “See and download your contacts”, and “See your age group”.

To compare Facebook vs. Google SSO permissions requested by the same websites, we
identified 254 websites with successful SSO logins using both IdPs. In 23 sites (9.05%),
Facebook permissions were more privacy-intrusive than Google permissions. In one case
(0.39%), Google permissions were more privacy-intrusive than Facebook. On two websites,
both Facebook and Google requested different non-minimal permissions.

12

5.3 Discrepancy of SSO Permissions Across Web and Android Apps

For Facebook SSO, we identified 40 services with different permissions between the web and
Android platforms. Among these, TikTok was the only service where the Android app’s app
ID differed from that of the website. 20 additional permissions were requested exclusively by
the websites, while 38 extra permissions were requested solely by the apps. For Google SSO,
we found permissions discrepancies in 23 cases. Among these, 22 additional permissions were
requested exclusively by the Android apps, while 14 extra permissions were requested only
by the websites. The statistics of apps with permission discrepancies are shown in Table 3.
Based on these findings, the Android platform typically requests more permissions than
the web platform (see Fig. 2 and Fig. 3), underscoring the varying privacy practices across
different SSO implementations.

Table 3: Breakdown of successful SSO logins and permissions discrepancies across Android
apps and corresponding websites

Facebook Google

Successful login on
apps

678 1716

Successful login on
the apps’ websites

318/678 (46.90%) 661/1716 (38.52%)

Different permis-
sions

40/318 (12.58%) 23/661 (3.48%)

Figure 2: SSO permissions discrepancies: extra permissions requested for Facebook SSO

13

Figure 3: SSO permissions discrepancies: extra permissions requested for Google SSO

Table 4: Privacy-intrusive permissions requested by Facebook and Google on web and An-
droid platforms

Android App Website Example App/Website (#DL)

F
a
c
e
b
o
o
k Photos 32 14 Tinder (100M+)

Friends list 30 11 StarMaker (100M+)

Page likes 3 1 Sociable (1M+)
Publish videos to timeline 0 1 Manycam.com

G
o
o
g
le

Gmail Emails (full access) 5 0 Yahoo Mail (100M+)
Google Calendar (full access) 5 2 TypeApp mail (1M+)
Google Calendar (read access) 2 2 Lich Van Nien 2024 (5M+)
Contacts (full access) 2 0 Microsoft Outlook Lite (10M+)
Contacts (read access) 2 4 Truecaller (1B+)
Youtube Account (full access) 1 0 AutoGuard Dash Cam (1M+)
Youtube Account (read access) 2 0 AmpMe (10M+)
Google Fit Physical Activity (write access) 1 0 Yoga Club (100K+)
Google Drive (read access) 1 0 Microsoft Outlook Lite (10M+)
Google Photos (read access) 1 1 Fotka (1M+)
Google Classroom Information (read access) 1 1 ThingLink (100K+)
Personal Phone numbers (read access) 1 2 Class101.net
Street Addresses (read access) 0 1 Dbl.id

5.4 Privacy-Intrusive Permissions

Throughout this study, we encountered several revealing and potentially dangerous permis-
sions requested during login by websites and mobile apps using Facebook and Google social
login options. These permissions extend beyond basic profile access, posing significant pri-
vacy risks by requesting access to more sensitive data. While some services may require
these permissions for specific functionalities, IdPs like Google and Facebook recommend de-
velopers adopt incremental authorization [28, 19]. This approach ensures that permissions

14

Manycam.com
Class101.net
Dbl.id

are requested only when the user activates the related feature (e.g., importing Facebook
photos into the app), reducing unnecessary access to sensitive information for features users
may choose not to use; see Table 4.

In the case of Facebook, the following less common but highly intrusive permissions were
observed in our experiments: Photos, Friends list, Page likes (Allows the RP to view a list
of all Facebook Pages a user has liked, potentially disclosing personal interests, affiliations,
and political views), Publish videos to timeline (Grants the RP the ability to publish live
videos to a user’s timeline, group, event, or Page)

For Google, we identified the following permissions that grant extensive access to per-
sonal information: Gmail Emails (full access), Google Calendar (full access), Google Cal-
endar (read access), Contacts (full access), Contacts (read access), Youtube Account (full
access), Youtube Account (read access), Google Fit Physical Activity (write access) which
access individual activities like walking, running, number of calories burned, step count or
any workout activity that other apps have added to Google Fit. It also access informa-
tion about physical habits that may be sensitive and could be used to make assumptions
about users’ fitness. Google Drive (read access), Google Photos (read access), Google Class-
room Information (read access) which include access to users’ Google classes and the list of
students (rosters) , Personal Phone numbers (read access), Street Addresses (read access).

6 Case Studies

Here we discuss the results of our manual analysis of 14 RPs (out of 60 unique cases with
discrepancies, see Sec. 5.3), where there are significant permission differences between an
app and its corresponding website. We provide a summary of the discrepancies in Table 5;
for details of these services, see appendix A.3.

We found only minor differences in functionality (not in core features) between web and
Android versions of these services. This raises questions about the necessity of the extra
permissions requested, as these differences do not seem to justify the additional data access.

Furthermore, our review of the privacy policies for these fourteen services revealed only
in six cases, the extra permissions are mentioned in the privacy policy page, while eight of
them provided only broad descriptions of data collection, such as basic permissions for email
and name, without disclosing the additional permissions requested on the more intrusive
platform. For example, the ZEPETO app requests access to the “Friends list” only on its
mobile version, yet this is not mentioned in its privacy policy. Additionally, while all the
services investigated had a single privacy policy covering all versions of their service, none
specified platform-specific permissions for web and app versions. This lack of transparency
leaves users unaware of the permissions requested on different versions of the app, raising
concerns about the justification for such requests.

With the exception of two cases (Cupid Media, and ManyCam), the other apps provide
an Apple SSO option for login on their websites or iOS versions. As Apple’s documentation
states [6], Apple only shares the user’s name and/or email with RPs. Therefore, offering
Apple SSO indicates that the service can operate with minimal SSO permissions.

We further compared SSO login options with manual registration by creating user ac-
counts on both the web and Android versions of each service. With the exception of the
Sociable app, which only offers SSO options for login and registration, for 9/14 services, the
SSO login option was found to be more intrusive than manual registration. In 2 cases, both
options had comparable privacy levels. Only for Cupid Media, manual registration required

15

more information (country and city on the app) than Google SSO login (no Facebook SSO
support).

Table 5 provides a summary for all services. The permissions listed in the “Extra Per-
missions” column are those that were requested exclusively on either the website or Android
app, with the corresponding platform not requiring the same permissions. Note that we dis-
closed our observations to all the developers of these apps as mentioned in the Introduction.

Table 5: Extra permissions requested on either the mobile platform or website for notable
services

Application #DL SSO Type Platform Extra Permissions

TikTok 1B+ mobile Email, Age range, Friends list
Smule 100M+ mobile Email, Age range, Friends list
Badoo 100M+ web Birthday, Gender
Zepeto 100M+ mobile Email, Friends list
iHeart 50M+ mobile Birthday, Gender
adidas 50M+ web Birthday, Gender, Age range
Chess 50M+ web Friends list
Tagged 50M+ mobile Photos

web Contacts (read access)
Desygner 5M+ web Photos
Sociable 1M+ mobile Email, Birthday, Gender,

Friends list, Page likes, Photos
mobile Birthday, Gender

ManyCam 1M+ web Email, Publish video to timeline
AsianDating
BrazilCupid
HongKongCupid

1M+ mobile Birthday, Gender

WellnessLiving
Achieve

100K+ web Gender, Timeline link

mobile Birthday, Google Calendar (full access)
web Secondary Google Calendars (full access),

Google Calendar (read access)
InmatePhotos 100K+ web Google Photos

7 Privacy Risks from Permission Adjustments

In both Google and Facebook IdPs, users have the right to deny any permissions beyond the
default (which includes only basic profile information) during login, or afterward through the
IdP’s dashboard. Dimova et al. [14] also explored the removal of non-minimal permissions
as a way to reduce privacy exposure (most websites were found to function properly without
the extra permissions). While this option is available to users, we examine a potential abuse
of it—to forcibly increase SSO permissions by modifying the OAuth flow from the client side
by a malicious RP. For testing purposes, we selected certain websites that use Google and
Facebook SSO and attempted to inject extra permissions into the OAuth scopes transferred
in the requests. Importantly, these tests were conducted on existing websites rather than
personal test applications, and all findings were responsibly disclosed to the respective IdPs.

16

As documented [20, 29], both Google and Facebook require developers to undergo a review
process when requesting non-minimal permissions to ensure the necessity and non-malicious
intent of the developers. However, we found that this review process can be bypassed in
Facebook’s case, allowing a malicious developer to request more permissions than those
allowed in the review process.

We noticed that by injecting extra permissions in the “params[steps]” parameter within
Facebook SSO requests, a developer can forcibly request additional permissions beyond
those initially approved during the Facebook review process. This means a developer could
release an app with minimal permissions or less intrusive permissions to avoid or facilitate
Facebook’s review process, but later request additional permissions from users to gain access
to their resources. Importantly, the consent screen still displays all requested permissions
to the user, regardless of the initial approval. We responsibly reported this finding to Face-
book as a lack of permission validation on Facebook’s side—i.e., not checking the requested
permissions against the reviewed permissions. Facebook confirmed the vulnerability and
addressed it accordingly, awarding us a bounty in recognition of our responsible disclosure.

In contrast, Google categorizes its SSO scopes into three broad levels: non-sensitive,
sensitive, and restricted. The review process is conducted based on these categories. If an
application is granted access to non-sensitive scopes (e.g., gender), it can access all scopes
within this category (e.g., birthday, street address, and classroom rosters). Similarly, ap-
plications validated for sensitive scopes (e.g., contacts) can access any other scopes in the
sensitive or non-sensitive categories. For restricted scopes, such as those related to Gmail
or Google Drive, access implicitly includes all lower-tier categories. However, Google’s doc-
umentation does not explain this categorization, nor did they provide clarification when
directly queried. Therefore, we observed that developers can verify their application for a
specific non-sensitive scope, such as a user’s birthday, and later request additional permis-
sions within the same category, such as the user’s street address.

Additionally, attempts to inject a sensitive scope into the OAuth flow on a service config-
ured for non-sensitive scopes result in a non-preventative error message. This error message
reveals the developer’s Gmail address, submitted as contact information during the SSO
setup. In contrast, attempts to inject a restricted scope result in a stricter response, with
Google blocking the OAuth flow entirely and preventing the user from proceeding.

These variations in behavior suggest that Google has implemented some safeguards to
handle unforeseen permission requests, potentially mitigating associated risks to a certain
extent. We responsibly disclosed our findings to Google, and their response confirmed that
these behaviors are intentional.

8 Conclusion

This study analyzes discrepancies in permissions requested by Google and Facebook SSO
across Android and web platforms. As part of this work, we developed SSO-Scoper, an auto-
mated framework for SSO logins, enabling a systematic comparison of permissions between
platforms and identifying more privacy-intrusive requests. Our findings show that SSO per-
missions differ significantly: Facebook SSO generally requests more intrusive permissions
than Google SSO, and Android apps demand more permissions than web apps. Specifically,
we observed a 12.58% discrepancy in Facebook SSO and a 3.48% discrepancy in Google
SSO permissions between web and Android platforms. We also uncovered potential risks,
including permission validation gaps in Facebook and inconsistent behaviors in Google’s

17

review process that could allow permissions to bypass checks. These findings highlight the
need for incremental authorization, where permissions are requested only when necessary,
to enhance user privacy.

References

[1] Accept all cookies (2024), https://chromewebstore.google.com/detail/

accept-all-cookies/ofpnikijgfhlmmjlpkfaifhhdonchhoi, version 1.0.3

[2] Adguard adblocker (2024), https://chromewebstore.google.com/detail/

adguard-adblocker/bgnkhhnnamicmpeenaelnjfhikgbkllg, version 4.4.22

[3] Adnroidrank (2024), https://www.androidrank.org/

[4] Selenium 4.25.0 documentation (2024), https://www.selenium.dev/selenium/docs/
api/py/webdriver/selenium.webdriver.common.action_chains.html

[5] Al Rahat, T., Feng, Y., Tian, Y.: Oauthlint: An empirical study on oauth bugs in an-
droid applications. In: 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). pp. 293–304. IEEE (2019)

[6] Apple: Request an authorization to the sign in with apple server (2024),
https://developer.apple.com/documentation/sign_in_with_apple/request_

an_authorization_to_the_sign_in_with_apple_server

[7] Ardi, C., Calder, M.: The prevalence of single sign-on on the web: towards the next
generation of web content measurement. In: Proceedings of the 2023 ACM on Internet
Measurement Conference. pp. 124–130 (2023)

[8] Balash, D.G., Wu, X., Grant, M., Reyes, I., Aviv, A.J.: Security and privacy percep-
tions of third-party application access for google accounts. In: 31st USENIX security
symposium (USENIX Security 22). pp. 3397–3414 (2022)

[9] Bauer, L., Bravo-Lillo, C., Fragkaki, E., Melicher, W.: A comparison of users’ percep-
tions of and willingness to use google, facebook, and google+ single-sign-on function-
ality. In: Proceedings of the 2013 ACM workshop on Digital identity management. pp.
25–36 (2013)

[10] Benolli, M., Mirheidari, S.A., Arshad, E., Crispo, B.: The full gamut of an attack: An
empirical analysis of oauth csrf in the wild. In: Detection of Intrusions and Malware,
and Vulnerability Assessment: 18th International Conference, DIMVA 2021, Virtual
Event, July 14–16, 2021, Proceedings 18. pp. 21–41. Springer (2021)

[11] Ceci, L.: Most popular dating apps worldwide in june 2024, by number
of monthly downloads (2024), https://www.statista.com/statistics/1200234/

most-popular-dating-apps-worldwide-by-number-of-downloads/

[12] Chen, E.Y., Pei, Y., Chen, S., Tian, Y., Kotcher, R., Tague, P.: Oauth demystified for
mobile application developers. In: Proceedings of the 2014 ACM SIGSAC conference
on computer and communications security. pp. 892–903 (2014)

[13] Cohen, A.: Fuzzywuzzy (2020), https://pypi.org/project/fuzzywuzzy/

18

https://chromewebstore.google.com/detail/accept-all-cookies/ofpnikijgfhlmmjlpkfaifhhdonchhoi
https://chromewebstore.google.com/detail/accept-all-cookies/ofpnikijgfhlmmjlpkfaifhhdonchhoi
https://chromewebstore.google.com/detail/adguard-adblocker/bgnkhhnnamicmpeenaelnjfhikgbkllg
https://chromewebstore.google.com/detail/adguard-adblocker/bgnkhhnnamicmpeenaelnjfhikgbkllg
https://www.androidrank.org/
https://www.selenium.dev/selenium/docs/api/py/webdriver/selenium.webdriver.common.action_chains.html
https://www.selenium.dev/selenium/docs/api/py/webdriver/selenium.webdriver.common.action_chains.html
https://developer.apple.com/documentation/sign_in_with_apple/request_an_authorization_to_the_sign_in_with_apple_server
https://developer.apple.com/documentation/sign_in_with_apple/request_an_authorization_to_the_sign_in_with_apple_server
https://www.statista.com/statistics/1200234/most-popular-dating-apps-worldwide-by-number-of-downloads/
https://www.statista.com/statistics/1200234/most-popular-dating-apps-worldwide-by-number-of-downloads/
https://pypi.org/project/fuzzywuzzy/

[14] Dimova, Y., Van Goethem, T., Joosen, W.: Everybody’s looking for ssomething: A
large-scale evaluation on the privacy of oauth authentication on the web. Proceedings
on Privacy Enhancing Technologies (2023)

[15] Gafni, R., Nissim, D.: To social login or not login? exploring factors affecting the
decision. Issues in Informing Science and Information Technology 11(1), 57–72 (2014)

[16] Ghasemisharif, M., Kanich, C., Polakis, J.: Towards automated auditing for account
and session management flaws in single sign-on deployments. In: 2022 IEEE Symposium
on Security and Privacy (SP). pp. 1774–1790. IEEE (2022)

[17] Ghasemisharif, M., Ramesh, A., Checkoway, S., Kanich, C., Polakis, J.: O single sign-
off, where art thou? an empirical analysis of single sign-on account hijacking and session
management on the web. In: 27th USENIX Security Symposium (USENIX Security
18). pp. 1475–1492 (2018)

[18] Göçer, B.D., Bahtiyar, Ş.: An authorization framework with oauth for fintech servers.
In: 2019 4th International Conference on Computer Science and Engineering (UBMK).
pp. 536–541. IEEE (2019)

[19] Google: Incremental authorization (2024), https://developers.google.com/

identity/protocols/oauth2/web-server#incrementalAuth

[20] Google: Oauth app verification (2024), https://support.google.com/cloud/

answer/13463073

[21] Hardt, D.: The oauth 2.0 authorization framework (2012), https://datatracker.
ietf.org/doc/html/rfc6749

[22] Jannett, L., Mladenov, V., Mainka, C., Schwenk, J.: Distinct: identity theft using
in-browser communications in dual-window single sign-on. In: Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security. pp. 1553–1567
(2022)

[23] Jannett, Louis and Westers, Maximilian and Wich, Tobias and Mainka, Christian
and Mayer, Andreas and Mladenov, Vladislav: SoK: SSO-Monitor - The current
state and future research directions in single sign-on security measurements. In:
2024 IEEE 9th European Symposium on Security and Privacy (EuroS&P) (2024).
https://doi.org/TBD

[24] John.Kurkowski: Tldextract (2024), https://pypi.org/project/tldextract/

[25] Li, W., Mitchell, C.J., Chen, T.: Oauthguard: Protecting user security and privacy
with oauth 2.0 and openid connect. In: Proceedings of the 5th ACM workshop on
security standardisation research workshop. pp. 35–44 (2019)

[26] Liu, X., Liu, J., Wang, W., Zhu, S.: Android single sign-on security: Issues, taxonomy
and directions. Future Generation Computer Systems 89, 402–420 (2018)

[27] du Luxembourg, U.: Androzoo (2016), https://androzoo.uni.lu/

[28] Meta: Facebook login best practices (2024), https://developers.facebook.com/

docs/facebook-login/best-practices

19

https://developers.google.com/identity/protocols/oauth2/web-server#incrementalAuth
https://developers.google.com/identity/protocols/oauth2/web-server#incrementalAuth
https://support.google.com/cloud/answer/13463073
https://support.google.com/cloud/answer/13463073
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://pypi.org/project/tldextract/
https://androzoo.uni.lu/
https://developers.facebook.com/docs/facebook-login/best-practices
https://developers.facebook.com/docs/facebook-login/best-practices

[29] Meta: Permissions / login review (2024), https://developers.facebook.com/docs/
facebook-login/guides/permissions/review/

[30] Meta: Permissions reference for meta technologies apis (2024), https://developers.
facebook.com/docs/permissions

[31] Meta: Permissions with facebook login (2024), https://developers.facebook.com/
docs/facebook-login/guides/permissions/

[32] Morkonda, S.G., Chiasson, S., van Oorschot, P.C.: Empirical analysis and privacy im-
plications in oauth-based single sign-on systems. In: Proceedings of the 20th Workshop
on Workshop on Privacy in the Electronic Society. pp. 195–208 (2021)

[33] Morkonda, S.G., Chiasson, S., van Oorschot, P.C.: Influences of displaying permission-
related information on web single sign-on login decisions. Computers & Security 139,
103666 (2024)

[34] Morkonda, S.G., van Oorschot, P.C., Chiasson, S.: Exploring privacy implications in
oauth deployments. arXiv preprint arXiv:2103.02579 (2021)

[35] Morkonda Gnanasekaran, S., Chiasson, S., Van Oorschot, P.: “sign in with... privacy”:
Timely disclosure of privacy differences among web sso login options. ACM Transactions
on Privacy and Security (2025)

[36] Olano, F.: google-play-api (2024), https://github.com/facundoolano/

google-play-api

[37] Pham, T.H., Vo, Q.H., Dao, H., Fukuda, K.: Ssologin: A framework for automated
web privacy measurement with sso logins. In: Proceedings of the 18th Asian Internet
Engineering Conference. pp. 69–77 (2023)

[38] Philippaerts, P., Preuveneers, D., Joosen, W.: Oauch: Exploring security compliance
in the oauth 2.0 ecosystem. In: Proceedings of the 25th International Symposium on
Research in Attacks, Intrusions and Defenses. pp. 460–481 (2022)

[39] Pochat, V.L., Van Goethem, T., Tajalizadehkhoob, S., Korczyński, M., Joosen, W.:
Tranco: A research-oriented top sites ranking hardened against manipulation. arXiv
preprint arXiv:1806.01156 (2018)

[40] Pourali, S., Samarasinghe, N., Mannan, M.: Hidden in plain sight: exploring encrypted
channels in android apps. In: Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security. pp. 2445–2458 (2022)

[41] Rahat, T.A., Feng, Y., Tian, Y.: Cerberus: Query-driven scalable vulnerability de-
tection in oauth service provider implementations. In: Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security. pp. 2459–2473 (2022)

[42] Sadqi, Y., Belfaik, Y., Safi, S.: Web oauth-based sso systems security. In: Proceedings
of the 3rd International Conference on Networking, Information Systems & Security.
pp. 1–7 (2020)

[43] Shi, S., Wang, X., Lau, W.C.: Mossot: An automated blackbox tester for single sign-on
vulnerabilities in mobile applications. In: Proceedings of the 2019 ACMAsia Conference
on Computer and Communications Security. pp. 269–282 (2019)

20

https://developers.facebook.com/docs/facebook-login/guides/permissions/review/
https://developers.facebook.com/docs/facebook-login/guides/permissions/review/
https://developers.facebook.com/docs/permissions
https://developers.facebook.com/docs/permissions
https://developers.facebook.com/docs/facebook-login/guides/permissions/
https://developers.facebook.com/docs/facebook-login/guides/permissions/
https://github.com/facundoolano/google-play-api
https://github.com/facundoolano/google-play-api

[44] Soni, R.: Loginradius releases consumer identity trend report 2022, key lo-
gin methods highlighted (2022), https://www.loginradius.com/blog/identity/

loginradius-consumer-identity-trend-report-2022/

[45] Team, B.: Most popular apps (2024), https://backlinko.com/most-popular-apps

[46] UltrafunkAmsterdam: undetected chromedriver (2024), https://pypi.org/project/
undetected-chromedriver/

[47] Wang, K., Bai, G., Dong, N., Dong, J.S.: A framework for formal analysis of privacy
on sso protocols. In: Security and Privacy in Communication Networks: 13th Inter-
national Conference, SecureComm 2017, Niagara Falls, ON, Canada, October 22–25,
2017, Proceedings 13. pp. 763–777. Springer (2018)

[48] Wei, H., Hassanshahi, B., Bai, G., Krishnan, P., Vorobyov, K.: Moscan: A model-based
vulnerability scanner for web single sign-on services. In: Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis. pp. 678–681
(2021)

[49] Zhou, Y., Evans, D.: Ssoscan: automated testing of web applications for single sign-
on vulnerabilities. In: 23rd USENIX Security Symposium (USENIX Security 14). pp.
495–510 (2014)

A Appendix

A.1 Detection Keywords for SSO Buttons

This appendix presents the keywords used by SSO-Scoper to detect SSO-related buttons in
both apps and websites for login automation.

Table 6: Keywords for login detection in apps

Keywords

“register”, “login”, “sign up”, “signup”, “don’t have
an account? sign up”, “create an account”, “join”,
“join now”, “log in”, “sign in”, “log in to your ac-
count”, “login/signup”, “profile”, “login/register”,
“login or signup”, “login or register”, “register/lo-
gin”, “profile”, “user”, “continue”, “options”

A.2 Distribution of SSO Permissions Across Websites and Android
Apps

Fig. 4 and Fig. 5 show the distribution of Facebook and Google permissions across websites,
while Fig. 6 and Fig. 7 show the distribution of Facebook and Google permissions across
websites .

21

https://www.loginradius.com/blog/identity/loginradius-consumer-identity-trend-report-2022/
https://www.loginradius.com/blog/identity/loginradius-consumer-identity-trend-report-2022/
https://backlinko.com/most-popular-apps
https://pypi.org/project/undetected-chromedriver/
https://pypi.org/project/undetected-chromedriver/

Table 7: Keywords for SSO button detection

SSO Provider Keywords

Google SSO “google”, “gmail”, “google+”

Facebook SSO “facebook”, “fb[*]?login”,
“fb[*]?sign”

Table 8: Regular expressions used for login detection in websites

Keywords

‘ ‘ ˆ (Log | Sign) [\ s] ? in$ ” ,
‘ ‘ ˆ Log in to your account$ ” ,
‘ ‘ ˆ Login (/ | or) (SignUp | Reg i s t e r) $ ” ,
‘ ‘ ˆ Reg i s t e r /Log [\ s] ? in$ ” ,
‘ ‘ ˆ s i gn [\ s] ? up$ ” ,
‘ ‘ ˆ P r o f i l e $ ” ,
‘ ‘ ˆDon ’ t have an account ? s i gn up$ ” ,
‘ ‘ ˆ Create an Account$ ” ,
‘ ‘ ˆ (Join | Reg i s t e r) [\ s] ?Now[\ s] ? $”

A.3 Example Cases

Below we provide details of the RPs with significant discrepancies in SSO permissions be-
tween their apps and websites.

TikTok. This app is the third most popular social media app worldwide [45] with over 1
billion downloads from the Google Play Store, employs different Facebook app IDs for han-
dling its mobile and web applications separately. During our experiments, we observed that
while TikTok only requests the “Name and profile picture” permission on its website, it re-
quests three additional permissions—“Email address”, “Age range”, and “Friends list”—on
its Android app. The “Friends list” permission pertains to the user’s list of friends who
also use TikTok. When logging in with Google SSO, the app requests only the minimal
permission “See your profile info” on both the web and Android platforms.
Smule: Karaoke Songs & Videos. Smule is a popular entertainment app with over
100 million downloads, supporting both Facebook and Google SSO on its mobile and web
platforms. Our analysis revealed discrepancies in the permissions requested between the
web and Android platforms when using Facebook SSO. On Android, Smule requests access
to three additional data fields: “Email address”, “Age range”, and “Friends list”, whereas
on the web platform, it only requests the “Name and profile picture” permission. Addi-
tionally, when using Google SSO, the app requests only the minimal permission, “See your
profile info”. We reached out to the Smule support team regarding the discrepancies in
permissions. Their response indicated that the mandatory permissions remain the same

22

Figure 4: Distribution of Facebook permissions in websites without the two minimal per-
missions of “Name and profile picture” and “Email”

across both platforms, while the optional permissions differ. They clarified that it is up to
the user’s discretion to grant additional permissions, as they are not mandatory. According
to Facebook’s specifications [31], the only mandatory permission is the “Name and profile
picture” field, allowing users to deny any additional permissions by modifying them during
the login process. However, since these extra permissions are still presented as default re-
quirements during login, our experiment did not account for users deliberately modifying
permissions.
Badoo Dating App: Meet & Date. Badoo is recognized as the fourth most popular
dating app worldwide, according to Statista’s 2024 report [11]. Unlike most apps, Badoo
requests more permissions when users log in using Facebook SSO on a web browser. The
additional permissions include the user’s “Birthday” and “Gender” from their Facebook
profile, while this information is not required on the Android app or during the Google
SSO login process. When using Google SSO, the app only requests the minimal permission,
“See your profile info”. In response to our inquiry about the differing permissions across
the two platforms, they replied, stating that “both the app and web versions only require
members to share their Facebook name and profile picture. Members can then optionally
choose to share their email address, gender, and birthday from Facebook if they wish.”
However, their response did not justify the current permissions, and they did not address
our follow-up question regarding the reason behind the existing difference.
ZEPETO: Avatar, Connect & Live. ZEPETO is a virtual role-playing game that al-
lows users to create digital avatars, boasting over 100 million downloads on the Google Play
Store. While the app requests only the “Name and profile picture” permission when logging
into the web version via Facebook SSO, the Android version requires two additional per-
missions: “Email address” and “Friends list”. The functionality review revealed that user
registration can only be completed through the mobile app, forcing users to grant the extra
permissions regardless of their necessity, as the additional permissions appear unnecessary
for the app’s functionality.
iHeart: Music, Radio, Podcasts. iHeart is a well-known music, radio, and podcast app

23

Figure 5: Distribution of Google permissions in websites without the minimal permission
“See your profile info”. The labels in parentheses indicate whether the permission involves
read (R) and/or write (W) access.

with over 50 million downloads from the Google Play Store. This app requests minimal
permissions from users on its web platform during Google SSO login. However, when using
the Android app or logging in with a Facebook account, the app consistently requests access
to the user’s “Birthday” and “Gender”, regardless of the platform.
adidas: Shop Shoes & Clothing. Adidas is a renowned shopping brand that offers web
and mobile apps for online shopping, with over 50 million downloads. When using Google
SSO to log in to this app, both the web and Android app platforms require only minimal
mandatory permissions, while the permissions for “Age Group” and “Exact Date of Birth”
are presented as optional, allowing the user to choose whether to grant them. In contrast,
when using Facebook SSO on the web platform, the same permissions—“Age Group” and
“Birthday”—along with the user’s “Gender”, are requested as mandatory, whereas these
permissions are not requested on the Android app.
Chess - Play and Learn. Chess is a free, unlimited chess game with over 50 million
downloads. This gaming app requests access to its users’ list of friends who also use the
app, only when a user logs in with their Facebook account on a web browser. In contrast,
when using the mobile app or logging in with Google SSO, the app requests only the mini-
mal permissions.
Tagged - Meet, Chat & Dating. Tagged is a dating app with over 50 million users.
On the Android app of this service, the “Photos” permission is requested, granting read
access to the photos a user has uploaded to Facebook [30], which may include personal
and sensitive images. In contrast, logging in with Google SSO on the web results in an
additional permission, “See and download your contacts”, which provides read access to all
of the user’s Google contacts. Google specifies that this permission allows the app to view
and make a copy of the user’s Google Contacts, which may include names, phone numbers,

24

Figure 6: Distribution of Facebook permissions in Android apps without the two minimal
permissions of “Name and profile picture” and “Email”

addresses, and other information about the user’s acquaintances.
Desygner: Graphic Design Maker. Desygner is a business marketing app with over 5
million downloads from the Google Play Store. While the app requests minimal permissions
when logging in with Google SSO, it requests access to the user’s Facebook photos when
the user chooses to log in with Facebook on a web browser. This permission (“Photos”)
is not required when the user uses the same SSO option to log in on an Android device.
Regarding functionality, both the app and website offer similar functionality, allowing users
to upload or import photos from Facebook. However, the web version requests the “Pho-
tos” permission during login but requires re-authentication later to access photos, while the
Android app requests the permission only when the user navigates to the Gallery to upload
images.

Sociable - Social Games & Chat. Sociable is a social gaming app with over 1 million
downloads. This app exhibits several discrepancies in its requested permissions across web
and mobile platforms, as well as between Facebook and Google SSOs. Overall, the app
requests more permissions on its Android app compared to its website version. When using
Facebook SSO, the app requests sensitive additional permissions, such as access to the user’s
photos posted on Facebook (“Photos”) and a list of all Facebook Pages the user has liked
(“Page likes”), among other permissions; see Table 5. In contrast, when using Google SSO,
the app requests access to the user’s birth date and gender exclusively on the Android
platform.

After reviewing the functionality of Sociable, we found that full registration and core
features like gaming are only available on the mobile app, with the website encouraging
users to install the app for the complete experience. Despite extensive permission requests
via Facebook and Google SSO, these permissions were not visibly utilized in either version.

ManyCam - Easy live streaming. ManyCam is a virtual camera and live streaming
software with over 1 million downloads on the Google Play Store. This app requests minimal
permissions when logging in with Google SSO on both Android and web platforms, as well

25

Figure 7: Distribution of Google permissions in Android apps without minimal permission
“See your profile info”. The labels in parentheses indicate whether the permission involves
read (R) and/or write (W) access.

as during Facebook login on the Android app. However, when using Facebook SSO on the
web, it requests permission to publish live videos to the user’s timeline, group, event, or
page (“Email address”, “Publish video to your timeline on your behalf”). The ManyCam
mobile app enables video streaming to Facebook, requesting permissions “Publish video to
your timeline on your behalf”, “Create and manage content on your Page”, “Read content
posted on the Page”, and “Show a list of the Pages you manage”. only when the user
decides to initiate a stream. In contrast, the website serves as an administrative panel with
no recording capabilities, making the permission to publish videos to the Facebook timeline
excessive and unnecessary on the web platform.

AsianDating: Asian Dating, BrazilCupid: Brazilian Dating, and HongKongCu-
pid Hong Kong Dating These three popular region-based dating apps are owned by “Cu-
pid Media” and share the same theme and configurations. When logging in with Google
SSO on the Android app, these apps require permissions for the user’s birthday and gen-
der, whereas these permissions are not requested on the web platform. In response to our
inquiry, the vendor explained that the Android app requests additional information, like
gender and birthday, to streamline the user experience by auto-populating profiles, while
the web platform only requires basic authentication. However, despite this explanation,
both the website and the Android app ask users for this information directly, rendering the
granted permissions unnecessary.

WellnessLiving Achieve. WellnessLiving is a software solution designed for art and
sports studios, supporting both Google and Facebook SSO login on its web and mobile
platforms. This app requests different permissions depending on the platform. When logging
in with Facebook SSO, the Android app requests only “Name and profile picture” and
“Email address”. However, on the web browser, it additionally requests the “gender” and a

26

“Timeline link” to access the user’s profile link. When a user chooses to log in using Google
SSO, the app requests more extensive permissions on the Android platform, including access
to the user’s birthday (“Exact Date of Birth”) and full access to all of their Google calendars
(“Google Calendar, see, edit, share, and permanently delete all the calendars you can access
using Google Calendar”). This permission allows the app to make changes to the user’s
calendars, as well as any calendar they can access via Google Calendar, including creating,
changing, or deleting calendars, updating individual calendar events, modifying settings
such as who can view the events, and altering who the calendar is shared with. This
is a sensitive permission, as a user’s calendar may contain personal contacts and private
appointments. In contrast, when logging in with Google SSO on the WellnessLiving website,
the service requests the following permissions: “Make secondary Google calendars, and see,
create, change, and delete events on them” and “See the list of Google calendars you’re
subscribed to”. Although Google OAuth scopes do not provide a detailed explanation for
this permission, the general description suggests that the app requests full access to all
of the user’s calendars. Functionality testing revealed that logging into the app was not
possible due to restricted access for specific accounts, though we successfully logged in on
the website. However, the requirement to complete medical information forms prevented a
full review of the features, leaving our functionality assessment incomplete and inconclusive.

Inmate Photos: Photos to Jail Inmate Photos is an app designed for delivering
photos and pictures to inmates. While this app requests access to users’ photos during both
Google and Facebook SSO login, it notably does not request this permission when logging
in with Facebook SSO on the Android app.

A.4 Example of Complex Login Path in Android App

Figure 8 shows an example of an Android app where the navigation path to the login is too
complex for SSO-Scoper to detect effectively.

27

(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4 (e) Step 5 (f) Step 6

Figure 8: Login process of the “Nations League & Women’s EURO” Android app, requiring
five clicks on buttons with uncommon keywords to reach the login screen. This complex
navigation path causes SSO-Scoper to fail in detecting and completing the login.

28

	Introduction
	Background
	Related Work
	Methodology
	SSO Logins on Android Apps
	Mapping of Android Apps and Websites
	SSO Logins on Websites
	Collection and Analysis of SSO Permissions

	Results
	Prevalence of SSO Logins on Android Apps
	Prevalence of SSO Logins on Websites
	Discrepancy of SSO Permissions Across Web and Android Apps
	Privacy-Intrusive Permissions

	Case Studies
	Privacy Risks from Permission Adjustments
	Conclusion
	Appendix
	Detection Keywords for SSO Buttons
	Distribution of SSO Permissions Across Websites and Android Apps
	Example Cases
	Example of Complex Login Path in Android App

